Cargando…
Machine Learning Approaches for the Frailty Screening: A Narrative Review
Frailty characterizes a state of impairments that increases the risk of adverse health outcomes such as physical limitation, lower quality of life, and premature death. Frailty prevention, early screening, and management of potential existing conditions are essential and impact the elderly populatio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320589/ https://www.ncbi.nlm.nih.gov/pubmed/35886674 http://dx.doi.org/10.3390/ijerph19148825 |
_version_ | 1784755829082161152 |
---|---|
author | Oliosi, Eduarda Guede-Fernández, Federico Londral, Ana |
author_facet | Oliosi, Eduarda Guede-Fernández, Federico Londral, Ana |
author_sort | Oliosi, Eduarda |
collection | PubMed |
description | Frailty characterizes a state of impairments that increases the risk of adverse health outcomes such as physical limitation, lower quality of life, and premature death. Frailty prevention, early screening, and management of potential existing conditions are essential and impact the elderly population positively and on society. Advanced machine learning (ML) processing methods are one of healthcare’s fastest developing scientific and technical areas. Although research studies are being conducted in a controlled environment, their translation into the real world (clinical setting, which is often dynamic) is challenging. This paper presents a narrative review of the procedures for the frailty screening applied to the innovative tools, focusing on indicators and ML approaches. It results in six selected studies. Support vector machine was the most often used ML method. These methods apparently can identify several risk factors to predict pre-frail or frailty. Even so, there are some limitations (e.g., quality data), but they have enormous potential to detect frailty early. |
format | Online Article Text |
id | pubmed-9320589 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93205892022-07-27 Machine Learning Approaches for the Frailty Screening: A Narrative Review Oliosi, Eduarda Guede-Fernández, Federico Londral, Ana Int J Environ Res Public Health Review Frailty characterizes a state of impairments that increases the risk of adverse health outcomes such as physical limitation, lower quality of life, and premature death. Frailty prevention, early screening, and management of potential existing conditions are essential and impact the elderly population positively and on society. Advanced machine learning (ML) processing methods are one of healthcare’s fastest developing scientific and technical areas. Although research studies are being conducted in a controlled environment, their translation into the real world (clinical setting, which is often dynamic) is challenging. This paper presents a narrative review of the procedures for the frailty screening applied to the innovative tools, focusing on indicators and ML approaches. It results in six selected studies. Support vector machine was the most often used ML method. These methods apparently can identify several risk factors to predict pre-frail or frailty. Even so, there are some limitations (e.g., quality data), but they have enormous potential to detect frailty early. MDPI 2022-07-20 /pmc/articles/PMC9320589/ /pubmed/35886674 http://dx.doi.org/10.3390/ijerph19148825 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Oliosi, Eduarda Guede-Fernández, Federico Londral, Ana Machine Learning Approaches for the Frailty Screening: A Narrative Review |
title | Machine Learning Approaches for the Frailty Screening: A Narrative Review |
title_full | Machine Learning Approaches for the Frailty Screening: A Narrative Review |
title_fullStr | Machine Learning Approaches for the Frailty Screening: A Narrative Review |
title_full_unstemmed | Machine Learning Approaches for the Frailty Screening: A Narrative Review |
title_short | Machine Learning Approaches for the Frailty Screening: A Narrative Review |
title_sort | machine learning approaches for the frailty screening: a narrative review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320589/ https://www.ncbi.nlm.nih.gov/pubmed/35886674 http://dx.doi.org/10.3390/ijerph19148825 |
work_keys_str_mv | AT oliosieduarda machinelearningapproachesforthefrailtyscreeninganarrativereview AT guedefernandezfederico machinelearningapproachesforthefrailtyscreeninganarrativereview AT londralana machinelearningapproachesforthefrailtyscreeninganarrativereview |