Cargando…
Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors
This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the resul...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320767/ https://www.ncbi.nlm.nih.gov/pubmed/35891013 http://dx.doi.org/10.3390/s22145334 |
_version_ | 1784755872192266240 |
---|---|
author | Fukuda, Gen Kubo, Nobuaki |
author_facet | Fukuda, Gen Kubo, Nobuaki |
author_sort | Fukuda, Gen |
collection | PubMed |
description | This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval > 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. |
format | Online Article Text |
id | pubmed-9320767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93207672022-07-27 Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors Fukuda, Gen Kubo, Nobuaki Sensors (Basel) Article This article proposes a novel initial bias estimation method using a trajectory generator (TG). The accuracy of attitude and position estimation in navigation after using the inertial navigation system/Doppler velocity log (INS/DVL) and INS/DVL/gyrocompass (IDG) for 1 h were evaluated, and the results were compared to those obtained using the conventional Kalman filter (KF) estimation method. The probability of a horizontal position error < 1852 m (1 nautical mile) with a bias interval > 400 s was 100% and 9% for the TG and KF, respectively. In addition, the IDG average horizontal position errors over 1 h were 493 m and 507 m for the TG and KF, respectively. Moreover, the amount of variation was 2 m and 27 m for the TG and the KF, respectively. Thus, the proposed method is effective for initial bias estimation of INS/DVL and IDG using micro-electro-mechanical system sensors on a constantly moving vessel. MDPI 2022-07-17 /pmc/articles/PMC9320767/ /pubmed/35891013 http://dx.doi.org/10.3390/s22145334 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fukuda, Gen Kubo, Nobuaki Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
title | Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
title_full | Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
title_fullStr | Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
title_full_unstemmed | Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
title_short | Application of Initial Bias Estimation Method for Inertial Navigation System (INS)/Doppler Velocity Log (DVL) and INS/DVL/Gyrocompass Using Micro-Electro-Mechanical System Sensors |
title_sort | application of initial bias estimation method for inertial navigation system (ins)/doppler velocity log (dvl) and ins/dvl/gyrocompass using micro-electro-mechanical system sensors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320767/ https://www.ncbi.nlm.nih.gov/pubmed/35891013 http://dx.doi.org/10.3390/s22145334 |
work_keys_str_mv | AT fukudagen applicationofinitialbiasestimationmethodforinertialnavigationsysteminsdopplervelocitylogdvlandinsdvlgyrocompassusingmicroelectromechanicalsystemsensors AT kubonobuaki applicationofinitialbiasestimationmethodforinertialnavigationsysteminsdopplervelocitylogdvlandinsdvlgyrocompassusingmicroelectromechanicalsystemsensors |