Cargando…

Introducing 4s–2p Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithium‐Ion Batteries

Oxides composed of an oxygen framework and interstitial cations are promising cathode materials for lithium‐ion batteries. However, the instability of the oxygen framework under harsh operating conditions results in fast battery capacity decay, due to the weak orbital interactions between cations an...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Gemeng, Olsson, Emilia, Zou, Jinshuo, Wu, Zhibin, Li, Jingxi, Lu, Cheng‐Zhang, D'Angelo, Anita M., Johannessen, Bernt, Thomsen, Lars, Cowie, Bruce, Peterson, Vanessa K., Cai, Qiong, Pang, Wei Kong, Guo, Zaiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320803/
https://www.ncbi.nlm.nih.gov/pubmed/35467801
http://dx.doi.org/10.1002/anie.202201969
_version_ 1784755881061122048
author Liang, Gemeng
Olsson, Emilia
Zou, Jinshuo
Wu, Zhibin
Li, Jingxi
Lu, Cheng‐Zhang
D'Angelo, Anita M.
Johannessen, Bernt
Thomsen, Lars
Cowie, Bruce
Peterson, Vanessa K.
Cai, Qiong
Pang, Wei Kong
Guo, Zaiping
author_facet Liang, Gemeng
Olsson, Emilia
Zou, Jinshuo
Wu, Zhibin
Li, Jingxi
Lu, Cheng‐Zhang
D'Angelo, Anita M.
Johannessen, Bernt
Thomsen, Lars
Cowie, Bruce
Peterson, Vanessa K.
Cai, Qiong
Pang, Wei Kong
Guo, Zaiping
author_sort Liang, Gemeng
collection PubMed
description Oxides composed of an oxygen framework and interstitial cations are promising cathode materials for lithium‐ion batteries. However, the instability of the oxygen framework under harsh operating conditions results in fast battery capacity decay, due to the weak orbital interactions between cations and oxygen (mainly 3d–2p interaction). Here, a robust and endurable oxygen framework is created by introducing strong 4s–2p orbital hybridization into the structure using LiNi(0.5)Mn(1.5)O(4) oxide as an example. The modified oxide delivers extraordinarily stable battery performance, achieving 71.4 % capacity retention after 2000 cycles at 1 C. This work shows that an orbital‐level understanding can be leveraged to engineer high structural stability of the anion oxygen framework of oxides. Moreover, the similarity of the oxygen lattice between oxide electrodes makes this approach extendable to other electrodes, with orbital‐focused engineering a new avenue for the fundamental modification of battery materials.
format Online
Article
Text
id pubmed-9320803
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93208032022-07-30 Introducing 4s–2p Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithium‐Ion Batteries Liang, Gemeng Olsson, Emilia Zou, Jinshuo Wu, Zhibin Li, Jingxi Lu, Cheng‐Zhang D'Angelo, Anita M. Johannessen, Bernt Thomsen, Lars Cowie, Bruce Peterson, Vanessa K. Cai, Qiong Pang, Wei Kong Guo, Zaiping Angew Chem Int Ed Engl Research Articles Oxides composed of an oxygen framework and interstitial cations are promising cathode materials for lithium‐ion batteries. However, the instability of the oxygen framework under harsh operating conditions results in fast battery capacity decay, due to the weak orbital interactions between cations and oxygen (mainly 3d–2p interaction). Here, a robust and endurable oxygen framework is created by introducing strong 4s–2p orbital hybridization into the structure using LiNi(0.5)Mn(1.5)O(4) oxide as an example. The modified oxide delivers extraordinarily stable battery performance, achieving 71.4 % capacity retention after 2000 cycles at 1 C. This work shows that an orbital‐level understanding can be leveraged to engineer high structural stability of the anion oxygen framework of oxides. Moreover, the similarity of the oxygen lattice between oxide electrodes makes this approach extendable to other electrodes, with orbital‐focused engineering a new avenue for the fundamental modification of battery materials. John Wiley and Sons Inc. 2022-05-05 2022-07-04 /pmc/articles/PMC9320803/ /pubmed/35467801 http://dx.doi.org/10.1002/anie.202201969 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Liang, Gemeng
Olsson, Emilia
Zou, Jinshuo
Wu, Zhibin
Li, Jingxi
Lu, Cheng‐Zhang
D'Angelo, Anita M.
Johannessen, Bernt
Thomsen, Lars
Cowie, Bruce
Peterson, Vanessa K.
Cai, Qiong
Pang, Wei Kong
Guo, Zaiping
Introducing 4s–2p Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithium‐Ion Batteries
title Introducing 4s–2p Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithium‐Ion Batteries
title_full Introducing 4s–2p Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithium‐Ion Batteries
title_fullStr Introducing 4s–2p Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithium‐Ion Batteries
title_full_unstemmed Introducing 4s–2p Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithium‐Ion Batteries
title_short Introducing 4s–2p Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithium‐Ion Batteries
title_sort introducing 4s–2p orbital hybridization to stabilize spinel oxide cathodes for lithium‐ion batteries
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320803/
https://www.ncbi.nlm.nih.gov/pubmed/35467801
http://dx.doi.org/10.1002/anie.202201969
work_keys_str_mv AT lianggemeng introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT olssonemilia introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT zoujinshuo introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT wuzhibin introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT lijingxi introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT luchengzhang introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT dangeloanitam introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT johannessenbernt introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT thomsenlars introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT cowiebruce introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT petersonvanessak introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT caiqiong introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT pangweikong introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries
AT guozaiping introducing4s2porbitalhybridizationtostabilizespineloxidecathodesforlithiumionbatteries