Cargando…

Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors

Malaria is a parasitic disease caused by protozoan parasites from the genus Plasmodium. Plasmodium falciparum is the most prevalent species worldwide and the causative agent of severe malaria. The spread of resistance to the currently available antimalarial therapy is a major concern. Therefore, it...

Descripción completa

Detalles Bibliográficos
Autores principales: Barbosa, Camila S., Ahmad, Anees, Maluf, Sarah El Chamy, Moura, Igor M. R., Souza, Guilherme E., Guerra, Giovanna A. H., Barros, Roberto R. Moraes, Gazarini, Marcos L., Aguiar, Anna C. C., Burtoloso, Antonio C. B., Guido, Rafael V. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321043/
https://www.ncbi.nlm.nih.gov/pubmed/35890113
http://dx.doi.org/10.3390/ph15070814
_version_ 1784755941520965632
author Barbosa, Camila S.
Ahmad, Anees
Maluf, Sarah El Chamy
Moura, Igor M. R.
Souza, Guilherme E.
Guerra, Giovanna A. H.
Barros, Roberto R. Moraes
Gazarini, Marcos L.
Aguiar, Anna C. C.
Burtoloso, Antonio C. B.
Guido, Rafael V. C.
author_facet Barbosa, Camila S.
Ahmad, Anees
Maluf, Sarah El Chamy
Moura, Igor M. R.
Souza, Guilherme E.
Guerra, Giovanna A. H.
Barros, Roberto R. Moraes
Gazarini, Marcos L.
Aguiar, Anna C. C.
Burtoloso, Antonio C. B.
Guido, Rafael V. C.
author_sort Barbosa, Camila S.
collection PubMed
description Malaria is a parasitic disease caused by protozoan parasites from the genus Plasmodium. Plasmodium falciparum is the most prevalent species worldwide and the causative agent of severe malaria. The spread of resistance to the currently available antimalarial therapy is a major concern. Therefore, it is imperative to discover and develop new antimalarial drugs, which not only treat the disease but also control the emerging resistance. Brussonol is an icetexane derivative and a member of a family of diterpenoids that have been isolated from several terrestrial plants. Here, the synthesis and antiplasmodial profiling of a series of brussonol derivatives are reported. The compounds showed inhibitory activities in the low micromolar range against a panel of sensitive and resistant P. falciparum strains (IC(50)s = 5–16 μM). Moreover, brussonol showed fast-acting in vitro inhibition and an additive inhibitory behavior when combined with the antimalarial artesunate (FIC(index)~1). The mode of action investigation indicated that brussonol increased the cytosolic calcium levels within the parasite. Hence, the discovery of brussonol as a new scaffold endowed with antiplasmodial activity will enable us to design derivatives with improved properties to deliver new lead candidates for malaria.
format Online
Article
Text
id pubmed-9321043
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93210432022-07-27 Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors Barbosa, Camila S. Ahmad, Anees Maluf, Sarah El Chamy Moura, Igor M. R. Souza, Guilherme E. Guerra, Giovanna A. H. Barros, Roberto R. Moraes Gazarini, Marcos L. Aguiar, Anna C. C. Burtoloso, Antonio C. B. Guido, Rafael V. C. Pharmaceuticals (Basel) Article Malaria is a parasitic disease caused by protozoan parasites from the genus Plasmodium. Plasmodium falciparum is the most prevalent species worldwide and the causative agent of severe malaria. The spread of resistance to the currently available antimalarial therapy is a major concern. Therefore, it is imperative to discover and develop new antimalarial drugs, which not only treat the disease but also control the emerging resistance. Brussonol is an icetexane derivative and a member of a family of diterpenoids that have been isolated from several terrestrial plants. Here, the synthesis and antiplasmodial profiling of a series of brussonol derivatives are reported. The compounds showed inhibitory activities in the low micromolar range against a panel of sensitive and resistant P. falciparum strains (IC(50)s = 5–16 μM). Moreover, brussonol showed fast-acting in vitro inhibition and an additive inhibitory behavior when combined with the antimalarial artesunate (FIC(index)~1). The mode of action investigation indicated that brussonol increased the cytosolic calcium levels within the parasite. Hence, the discovery of brussonol as a new scaffold endowed with antiplasmodial activity will enable us to design derivatives with improved properties to deliver new lead candidates for malaria. MDPI 2022-06-30 /pmc/articles/PMC9321043/ /pubmed/35890113 http://dx.doi.org/10.3390/ph15070814 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Barbosa, Camila S.
Ahmad, Anees
Maluf, Sarah El Chamy
Moura, Igor M. R.
Souza, Guilherme E.
Guerra, Giovanna A. H.
Barros, Roberto R. Moraes
Gazarini, Marcos L.
Aguiar, Anna C. C.
Burtoloso, Antonio C. B.
Guido, Rafael V. C.
Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors
title Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors
title_full Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors
title_fullStr Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors
title_full_unstemmed Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors
title_short Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors
title_sort synthesis, structure–activity relationships, and parasitological profiling of brussonol derivatives as new plasmodium falciparum inhibitors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321043/
https://www.ncbi.nlm.nih.gov/pubmed/35890113
http://dx.doi.org/10.3390/ph15070814
work_keys_str_mv AT barbosacamilas synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors
AT ahmadanees synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors
AT malufsarahelchamy synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors
AT mouraigormr synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors
AT souzaguilhermee synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors
AT guerragiovannaah synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors
AT barrosrobertormoraes synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors
AT gazarinimarcosl synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors
AT aguiarannacc synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors
AT burtolosoantoniocb synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors
AT guidorafaelvc synthesisstructureactivityrelationshipsandparasitologicalprofilingofbrussonolderivativesasnewplasmodiumfalciparuminhibitors