Cargando…
Motion corrected silent ZTE neuroimaging
PURPOSE: To develop self‐navigated motion correction for 3D silent zero echo time (ZTE) based neuroimaging and characterize its performance for different types of head motion. METHODS: The proposed method termed MERLIN (Motion Estimation & Retrospective correction Leveraging Interleaved Navigato...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321117/ https://www.ncbi.nlm.nih.gov/pubmed/35381110 http://dx.doi.org/10.1002/mrm.29201 |
Sumario: | PURPOSE: To develop self‐navigated motion correction for 3D silent zero echo time (ZTE) based neuroimaging and characterize its performance for different types of head motion. METHODS: The proposed method termed MERLIN (Motion Estimation & Retrospective correction Leveraging Interleaved Navigators) achieves self‐navigation by using interleaved 3D phyllotaxis k‐space sampling. Low resolution navigator images are reconstructed continuously throughout the ZTE acquisition using a sliding window and co‐registered in image space relative to a fixed reference position. Rigid body motion corrections are then applied retrospectively to the k‐space trajectory and raw data and reconstructed into a final, high‐resolution ZTE image. RESULTS: MERLIN demonstrated successful and consistent motion correction for magnetization prepared ZTE images for a range of different instructed motion paradigms. The acoustic noise response of the self‐navigated phyllotaxis trajectory was found to be only slightly above ambient noise levels (<4 dBA). CONCLUSION: Silent ZTE imaging combined with MERLIN addresses two major challenges intrinsic to MRI (i.e., subject motion and acoustic noise) in a synergistic and integrated manner without increase in scan time and thereby forms a versatile and powerful framework for clinical and research MR neuroimaging applications. |
---|