Cargando…
Size Effects of the Anions in the Ionothermal Synthesis of Carbon Nitride Materials
Semiconducting carbon nitride polymers are used in metal‐free photocatalysts and in opto‐electronic devices. Conventionally, they are obtained using thermal and ionothermal syntheses in inscrutable, closed systems and therefore, their condensation behavior is poorly understood. Here, the synthetic p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321126/ https://www.ncbi.nlm.nih.gov/pubmed/35404526 http://dx.doi.org/10.1002/chem.202200705 |
_version_ | 1784755962090881024 |
---|---|
author | Burmeister, David Müller, Johannes Plaickner, Julian Kochovski, Zdravko List‐Kratochvil, Emil J. W. Bojdys, Michael J. |
author_facet | Burmeister, David Müller, Johannes Plaickner, Julian Kochovski, Zdravko List‐Kratochvil, Emil J. W. Bojdys, Michael J. |
author_sort | Burmeister, David |
collection | PubMed |
description | Semiconducting carbon nitride polymers are used in metal‐free photocatalysts and in opto‐electronic devices. Conventionally, they are obtained using thermal and ionothermal syntheses in inscrutable, closed systems and therefore, their condensation behavior is poorly understood. Here, the synthetic protocols and properties are compared for two types of carbon nitride materials – 2D layered poly(triazine imide) (PTI) and hydrogen‐bonded melem hydrate – obtained from three low‐melting salt eutectics taken from the systematic series of the alkali metal halides: LiCl/KCl, LiBr/KBr, and LiI/KI. The size of the anion plays a significant role in the formation process of the condensed carbon nitride polymers, and it suggests a strong templating effect. The smaller anions (chloride and bromide) become incorporated into triazine (C(3)N(3))‐based PTI frameworks. The larger iodide does not stabilize the formation of a triazine‐based polymer, but instead it leads to the formation of the heptazine (C(6)N(7))‐based hydrogen‐bonded melem hydrate as the main crystalline phase. Melem hydrate, obtained as single‐crystalline powders, was compared with PTI in photocatalytic hydrogen evolution from water and in an OLED device. Further, the emergence of each carbon nitride species from its corresponding salt eutectic was rationalized via density functional theory calculations. This study highlights the possibilities to further tailor the properties of eutectic salt melts for ionothermal synthesis of organic functional materials. |
format | Online Article Text |
id | pubmed-9321126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93211262022-07-30 Size Effects of the Anions in the Ionothermal Synthesis of Carbon Nitride Materials Burmeister, David Müller, Johannes Plaickner, Julian Kochovski, Zdravko List‐Kratochvil, Emil J. W. Bojdys, Michael J. Chemistry Research Articles Semiconducting carbon nitride polymers are used in metal‐free photocatalysts and in opto‐electronic devices. Conventionally, they are obtained using thermal and ionothermal syntheses in inscrutable, closed systems and therefore, their condensation behavior is poorly understood. Here, the synthetic protocols and properties are compared for two types of carbon nitride materials – 2D layered poly(triazine imide) (PTI) and hydrogen‐bonded melem hydrate – obtained from three low‐melting salt eutectics taken from the systematic series of the alkali metal halides: LiCl/KCl, LiBr/KBr, and LiI/KI. The size of the anion plays a significant role in the formation process of the condensed carbon nitride polymers, and it suggests a strong templating effect. The smaller anions (chloride and bromide) become incorporated into triazine (C(3)N(3))‐based PTI frameworks. The larger iodide does not stabilize the formation of a triazine‐based polymer, but instead it leads to the formation of the heptazine (C(6)N(7))‐based hydrogen‐bonded melem hydrate as the main crystalline phase. Melem hydrate, obtained as single‐crystalline powders, was compared with PTI in photocatalytic hydrogen evolution from water and in an OLED device. Further, the emergence of each carbon nitride species from its corresponding salt eutectic was rationalized via density functional theory calculations. This study highlights the possibilities to further tailor the properties of eutectic salt melts for ionothermal synthesis of organic functional materials. John Wiley and Sons Inc. 2022-05-02 2022-06-10 /pmc/articles/PMC9321126/ /pubmed/35404526 http://dx.doi.org/10.1002/chem.202200705 Text en © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Burmeister, David Müller, Johannes Plaickner, Julian Kochovski, Zdravko List‐Kratochvil, Emil J. W. Bojdys, Michael J. Size Effects of the Anions in the Ionothermal Synthesis of Carbon Nitride Materials |
title | Size Effects of the Anions in the Ionothermal Synthesis of Carbon Nitride Materials |
title_full | Size Effects of the Anions in the Ionothermal Synthesis of Carbon Nitride Materials |
title_fullStr | Size Effects of the Anions in the Ionothermal Synthesis of Carbon Nitride Materials |
title_full_unstemmed | Size Effects of the Anions in the Ionothermal Synthesis of Carbon Nitride Materials |
title_short | Size Effects of the Anions in the Ionothermal Synthesis of Carbon Nitride Materials |
title_sort | size effects of the anions in the ionothermal synthesis of carbon nitride materials |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321126/ https://www.ncbi.nlm.nih.gov/pubmed/35404526 http://dx.doi.org/10.1002/chem.202200705 |
work_keys_str_mv | AT burmeisterdavid sizeeffectsoftheanionsintheionothermalsynthesisofcarbonnitridematerials AT mullerjohannes sizeeffectsoftheanionsintheionothermalsynthesisofcarbonnitridematerials AT plaicknerjulian sizeeffectsoftheanionsintheionothermalsynthesisofcarbonnitridematerials AT kochovskizdravko sizeeffectsoftheanionsintheionothermalsynthesisofcarbonnitridematerials AT listkratochvilemiljw sizeeffectsoftheanionsintheionothermalsynthesisofcarbonnitridematerials AT bojdysmichaelj sizeeffectsoftheanionsintheionothermalsynthesisofcarbonnitridematerials |