Cargando…
High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater
For the first time, membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) with 5–50 wt% loading of hyper-crosslinked polystyrene sorbent particles (HCPS) were obtained; the membranes were investigated for the problem of effective removal of volatile organic compounds from aqueous solutions usi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321245/ https://www.ncbi.nlm.nih.gov/pubmed/35890720 http://dx.doi.org/10.3390/polym14142944 |
_version_ | 1784755994258046976 |
---|---|
author | Golubev, Georgy Sokolov, Stepan Rokhmanka, Tatyana Makaev, Sergey Borisov, Ilya Khashirova, Svetlana Volkov, Alexey |
author_facet | Golubev, Georgy Sokolov, Stepan Rokhmanka, Tatyana Makaev, Sergey Borisov, Ilya Khashirova, Svetlana Volkov, Alexey |
author_sort | Golubev, Georgy |
collection | PubMed |
description | For the first time, membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) with 5–50 wt% loading of hyper-crosslinked polystyrene sorbent particles (HCPS) were obtained; the membranes were investigated for the problem of effective removal of volatile organic compounds from aqueous solutions using vacuum pervaporation. The industrial HCPS sorbent Purolite Macronet™ MN200 was chosen due to its high sorption capacity for organic solvents. It has been found that the membranes are asymmetric when HCPS content is higher than 30 wt%; scanning electron microscopy of the cross-sections the membranes demonstrate that they have a clearly defined thin layer, consisting mainly of PTMSP, and a thick porous layer, consisting mainly of HCPS. The transport and separation characteristics of PTMSP membranes with different HCPS loading were studied during the pervaporation separation of binary and multicomponent mixtures of water with benzene, toluene and xylene. It was shown that the addition of HCPS up to 30 wt% not only increases the permeate fluxes by 4–7 times, but at the same time leads to 1.5–2 fold increase in the separation factor. It was possible to obtain separation factors exceeding 1000 for all studied mixtures at high permeate fluxes (0.5–1 kg/m(2)∙h) in pervaporation separation of binary solutions. |
format | Online Article Text |
id | pubmed-9321245 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93212452022-07-27 High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater Golubev, Georgy Sokolov, Stepan Rokhmanka, Tatyana Makaev, Sergey Borisov, Ilya Khashirova, Svetlana Volkov, Alexey Polymers (Basel) Article For the first time, membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) with 5–50 wt% loading of hyper-crosslinked polystyrene sorbent particles (HCPS) were obtained; the membranes were investigated for the problem of effective removal of volatile organic compounds from aqueous solutions using vacuum pervaporation. The industrial HCPS sorbent Purolite Macronet™ MN200 was chosen due to its high sorption capacity for organic solvents. It has been found that the membranes are asymmetric when HCPS content is higher than 30 wt%; scanning electron microscopy of the cross-sections the membranes demonstrate that they have a clearly defined thin layer, consisting mainly of PTMSP, and a thick porous layer, consisting mainly of HCPS. The transport and separation characteristics of PTMSP membranes with different HCPS loading were studied during the pervaporation separation of binary and multicomponent mixtures of water with benzene, toluene and xylene. It was shown that the addition of HCPS up to 30 wt% not only increases the permeate fluxes by 4–7 times, but at the same time leads to 1.5–2 fold increase in the separation factor. It was possible to obtain separation factors exceeding 1000 for all studied mixtures at high permeate fluxes (0.5–1 kg/m(2)∙h) in pervaporation separation of binary solutions. MDPI 2022-07-20 /pmc/articles/PMC9321245/ /pubmed/35890720 http://dx.doi.org/10.3390/polym14142944 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Golubev, Georgy Sokolov, Stepan Rokhmanka, Tatyana Makaev, Sergey Borisov, Ilya Khashirova, Svetlana Volkov, Alexey High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater |
title | High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater |
title_full | High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater |
title_fullStr | High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater |
title_full_unstemmed | High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater |
title_short | High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater |
title_sort | high efficiency membranes based on ptmsp and hyper-crosslinked polystyrene for toxic volatile compounds removal from wastewater |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321245/ https://www.ncbi.nlm.nih.gov/pubmed/35890720 http://dx.doi.org/10.3390/polym14142944 |
work_keys_str_mv | AT golubevgeorgy highefficiencymembranesbasedonptmspandhypercrosslinkedpolystyrenefortoxicvolatilecompoundsremovalfromwastewater AT sokolovstepan highefficiencymembranesbasedonptmspandhypercrosslinkedpolystyrenefortoxicvolatilecompoundsremovalfromwastewater AT rokhmankatatyana highefficiencymembranesbasedonptmspandhypercrosslinkedpolystyrenefortoxicvolatilecompoundsremovalfromwastewater AT makaevsergey highefficiencymembranesbasedonptmspandhypercrosslinkedpolystyrenefortoxicvolatilecompoundsremovalfromwastewater AT borisovilya highefficiencymembranesbasedonptmspandhypercrosslinkedpolystyrenefortoxicvolatilecompoundsremovalfromwastewater AT khashirovasvetlana highefficiencymembranesbasedonptmspandhypercrosslinkedpolystyrenefortoxicvolatilecompoundsremovalfromwastewater AT volkovalexey highefficiencymembranesbasedonptmspandhypercrosslinkedpolystyrenefortoxicvolatilecompoundsremovalfromwastewater |