Cargando…
An Explainable Evolving Fuzzy Neural Network to Predict the k Barriers for Intrusion Detection Using a Wireless Sensor Network
Evolving fuzzy neural networks have the adaptive capacity to solve complex problems by interpreting them. This is due to the fact that this type of approach provides valuable insights that facilitate understanding the behavior of the problem being analyzed, because they can extract knowledge from a...
Autores principales: | de Campos Souza, Paulo Vitor, Lughofer, Edwin, Rodrigues Batista, Huoston |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321262/ https://www.ncbi.nlm.nih.gov/pubmed/35891140 http://dx.doi.org/10.3390/s22145446 |
Ejemplares similares
-
Identification of Heart Sounds with an Interpretable Evolving Fuzzy Neural Network
por: de Campos Souza, Paulo Vitor, et al.
Publicado: (2020) -
Evolving fuzzy neural classifier that integrates uncertainty from human-expert feedback
por: de Campos Souza, Paulo Vitor, et al.
Publicado: (2022) -
Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks
por: Navia, Marlon, et al.
Publicado: (2015) -
A Partially Distributed Intrusion Detection System for Wireless Sensor Networks
por: Cho, Eung Jun, et al.
Publicado: (2013) -
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network
por: Sun, Xuemei, et al.
Publicado: (2015)