Cargando…
The assessment of fundus image quality labeling reliability among graders with different backgrounds
PURPOSE: For the training of machine learning (ML) algorithms, correctly labeled ground truth data are inevitable. In this pilot study, we assessed the performance of graders with different backgrounds in the labeling of retinal fundus image quality. METHODS: Color fundus photographs were labeled us...
Autores principales: | Laurik-Feuerstein, Kornélia Lenke, Sapahia, Rishav, Cabrera DeBuc, Delia, Somfai, Gábor Márk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321443/ https://www.ncbi.nlm.nih.gov/pubmed/35881576 http://dx.doi.org/10.1371/journal.pone.0271156 |
Ejemplares similares
-
Correction: The assessment of fundus image quality labeling reliability among graders with different backgrounds
por: Laurik-Feuerstein, Kornélia Lenke, et al.
Publicado: (2023) -
Investigating Tissue Optical Properties and Texture Descriptors of the Retina in Patients with Multiple Sclerosis
por: Varga, Boglárka Enikő, et al.
Publicado: (2015) -
Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage
por: Somfai, Gábor Márk, et al.
Publicado: (2014) -
Automated classifiers for early detection and diagnosis of retinopathy in diabetic eyes
por: Somfai, Gábor Márk, et al.
Publicado: (2014) -
The effect of incorrect scanning distance on boundary detection errors and macular thickness measurements by spectral domain optical coherence tomography: a cross sectional study
por: Varga, Boglárka Enikő, et al.
Publicado: (2014)