Cargando…

Diffusion Weighted Imaging in Gliomas: A Histogram-Based Approach for Tumor Characterization

SIMPLE SUMMARY: Glioma represent approximately one-third of all brain tumors. Although they differ clinically, histologically and genetically, they often are not distinguishable by morphological magnetic resonance imaging (MRI) diagnostics. We therefore investigated in this retrospective study wheth...

Descripción completa

Detalles Bibliográficos
Autores principales: Gihr, Georg, Horvath-Rizea, Diana, Kohlhof-Meinecke, Patricia, Ganslandt, Oliver, Henkes, Hans, Härtig, Wolfgang, Donitza, Aneta, Skalej, Martin, Schob, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321540/
https://www.ncbi.nlm.nih.gov/pubmed/35884457
http://dx.doi.org/10.3390/cancers14143393
Descripción
Sumario:SIMPLE SUMMARY: Glioma represent approximately one-third of all brain tumors. Although they differ clinically, histologically and genetically, they often are not distinguishable by morphological magnetic resonance imaging (MRI) diagnostics. We therefore investigated in this retrospective study whether diffusion weighted imaging (DWI) using a radiomic approach could provide complementary information with respect to tumor differentiation and cell proliferation, as well as the underlying genetic and epigenetic tumor profile. We identified several histogram features that could facilitate presurgical tumor grading and potentially enable one to draw conclusions about tumor characteristics on a cellular and subcellular scale. ABSTRACT: (1) Background: Astrocytic gliomas present overlapping appearances in conventional MRI. Supplementary techniques are necessary to improve preoperative diagnostics. Quantitative DWI via the computation of apparent diffusion coefficient (ADC) histograms has proven valuable for tumor characterization and prognosis in this regard. Thus, this study aimed to investigate (I) the potential of ADC histogram analysis (HA) for distinguishing low-grade gliomas (LGG) and high-grade gliomas (HGG) and (II) whether those parameters are associated with Ki-67 immunolabelling, the isocitrate-dehydrogenase-1 (IDH1) mutation profile and the methylguanine-DNA-methyl-transferase (MGMT) promoter methylation profile; (2) Methods: The ADC-histograms of 82 gliomas were computed. Statistical analysis was performed to elucidate associations between histogram features and WHO grade, Ki-67 immunolabelling, IDH1 and MGMT profile; (3) Results: Minimum, lower percentiles (10th and 25th), median, modus and entropy of the ADC histogram were significantly lower in HGG. Significant differences between IDH1-mutated and IDH1-wildtype gliomas were revealed for maximum, lower percentiles, modus, standard deviation (SD), entropy and skewness. No differences were found concerning the MGMT status. Significant correlations with Ki-67 immunolabelling were demonstrated for minimum, maximum, lower percentiles, median, modus, SD and skewness; (4) Conclusions: ADC HA facilitates non-invasive prediction of the WHO grade, tumor-proliferation rate and clinically significant mutations in case of astrocytic gliomas.