Cargando…

Renaissance of Topotactic Ion‐Exchange for Functional Solids with Close Packed Structures

Recently, many new, complex, functional oxides have been discovered with the surprising use of topotactic ion‐exchange reactions on close‐packed structures, such as found for wurtzite, rutile, perovskite, and other structure types. Despite a lack of apparent cation‐diffusion pathways in these struct...

Descripción completa

Detalles Bibliográficos
Autores principales: Gabilondo, Eric, O'Donnell, Shaun, Newell, Ryan, Broughton, Rachel, Mateus, Marcelo, Jones, Jacob L., Maggard, Paul A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321548/
https://www.ncbi.nlm.nih.gov/pubmed/35389540
http://dx.doi.org/10.1002/chem.202200479
Descripción
Sumario:Recently, many new, complex, functional oxides have been discovered with the surprising use of topotactic ion‐exchange reactions on close‐packed structures, such as found for wurtzite, rutile, perovskite, and other structure types. Despite a lack of apparent cation‐diffusion pathways in these structure types, synthetic low‐temperature transformations are possible with the interdiffusion and exchange of functional cations possessing ns (2) stereoactive lone pairs (e. g., Sn(II)) or unpaired nd ( x ) electrons (e. g., Co(II)), targeting new and favorable modulations of their electronic, magnetic, or catalytic properties. This enables a synergistic blending of new functionality to an underlying three‐dimensional connectivity, i. e., [‐M−O‐M‐O‐]( n ), that is maintained during the transformation. In many cases, this tactic represents the only known pathway to prepare thermodynamically unstable solids that otherwise would commonly decompose by phase segregation, such as that recently applied to the discovery of many new small bandgap semiconductors.