Cargando…
Remaining Useful Life Prediction Model for Rolling Bearings Based on MFPE–MACNN
Aiming to resolve the problem of redundant information concerning rolling bearing degradation characteristics and to tackle the difficulty faced by convolutional deep learning models in learning feature information in complex time series, a prediction model for remaining useful life based on multisc...
Autores principales: | Wang, Yaping, Wang, Jinbao, Zhang, Sheng, Xu, Di, Ge, Jianghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321675/ https://www.ncbi.nlm.nih.gov/pubmed/35885128 http://dx.doi.org/10.3390/e24070905 |
Ejemplares similares
-
Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin
por: Zhang, Rui, et al.
Publicado: (2022) -
Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network
por: Song, Lin, et al.
Publicado: (2023) -
Remaining Useful Life Prediction of Rolling Bearings Based on Multi-scale Permutation Entropy and ISSA-LSTM
por: Wang, Hongju, et al.
Publicado: (2023) -
A Rolling Bearing Fault Diagnosis Method Based on EEMD-WSST Signal Reconstruction and Multi-Scale Entropy
por: Ge, Jianghua, et al.
Publicado: (2020) -
Remaining Useful Life Prediction of Rolling Bearings Using GRU-DeepAR with Adaptive Failure Threshold
por: Li, Jiahui, et al.
Publicado: (2023)