Cargando…
The Identification of Subphenotypes and Associations with Health Outcomes in Patients with Opioid-Related Emergency Department Encounters Using Latent Class Analysis
The emergency department (ED) is a critical setting for the treatment of patients with opioid misuse. Detecting relevant clinical profiles allows for tailored treatment approaches. We sought to identify and characterize subphenotypes of ED patients with opioid-related encounters. A latent class anal...
Autores principales: | Chhabra, Neeraj, Smith, Dale L., Maloney, Caitlin M., Archer, Joseph, Sharma, Brihat, Thompson, Hale M., Afshar, Majid, Karnik, Niranjan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321801/ https://www.ncbi.nlm.nih.gov/pubmed/35886733 http://dx.doi.org/10.3390/ijerph19148882 |
Ejemplares similares
-
External validation of a machine learning classifier to identify unhealthy alcohol use in hospitalized patients
por: Lin, Yiqi, et al.
Publicado: (2021) -
Machine Learning Techniques to Explore Clinical Presentations of COVID-19 Severity and to Test the Association With Unhealthy Opioid Use: Retrospective Cross-sectional Cohort Study
por: Thompson, Hale M, et al.
Publicado: (2022) -
External validation of an opioid misuse machine learning classifier in hospitalized adult patients
por: Afshar, Majid, et al.
Publicado: (2021) -
Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients
por: Sharma, Brihat, et al.
Publicado: (2020) -
Development and multimodal validation of a substance misuse algorithm for referral to treatment using artificial intelligence (SMART-AI): a retrospective deep learning study
por: Afshar, Majid, et al.
Publicado: (2022)