Cargando…

Study on Carbonization Characteristics and Deterioration Mechanism of Recycled Concrete with Tailings and Polypropylene Fiber

To improve the deformation performance of recycled concrete with tailings (TRC), its carbonization characteristics and deterioration mechanism with different polypropylene fiber content were analyzed macroscopically and microscopically. The results showed that the fiber had little effect on the comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Tao, Zhan, Meng, Chen, Xiuyun, Xu, Fan, Wang, Sheliang, Liu, Xinxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321805/
https://www.ncbi.nlm.nih.gov/pubmed/35890534
http://dx.doi.org/10.3390/polym14142758
Descripción
Sumario:To improve the deformation performance of recycled concrete with tailings (TRC), its carbonization characteristics and deterioration mechanism with different polypropylene fiber content were analyzed macroscopically and microscopically. The results showed that the fiber had little effect on the compressive strength, which increased first and then decreased, with the optimum content being 0.6%. The splitting tensile strength first increased and then tended to be stable, with the optimum dosage ranging from 0.6% to 0.9%. The more the content, the higher the peak strain and the lower the elastic modulus. The rising section of its constitutive curve changed little, while the falling section became more gentle. Carbonization made the relative dynamic elastic modulus change small with a trend of first increasing and then decreasing, and the optimum content was 0.6–0.9%. When the fiber content was small, the influence on the carbonization depth did not remain significant, but when it was large, the depth increased obviously, and this critical content was about 0.6%. Microscopically, through nuclear-magnetic resonance (NMR) and scanning electron microscope (SEM) analysis, due to the strong tensioning effect of the fiber, when a small amount was added, the porosity and pore structure had not been significantly changed, so the impact on its resistance to carbonization was not obvious. However, after excessive addition, the interface transition zone (ITZ) between different materials became larger, resulting in a significant increase of its harmful cracks and a great impact on the anti-carbonization ability, with the optimal content being about 0.6%. This study provides a theoretical reference for the deformation performance improvement measure of TRC, which would be helpful for the rapid promotion and application of green concrete in engineering practice.