Cargando…
Investigating the Impact of Dragon Fruit Peel Waste on Starch Digestibility, Pasting, and Thermal Properties of Flours Used in Asia
As a by-product of dragon fruit consumption, dragon fruit peel (DFP) was developed into powder as a natural ingredient. Nevertheless, the effect of DFP on the physicochemical properties of flours used in Asian food processing and cooking remains unknown. In this study, starch digestibility, thermal,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321922/ https://www.ncbi.nlm.nih.gov/pubmed/35885274 http://dx.doi.org/10.3390/foods11142031 |
_version_ | 1784756168272379904 |
---|---|
author | Chumroenvidhayakul, Siriwan Thilavech, Thavaree Abeywardena, Mahinda Adisakwattana, Sirichai |
author_facet | Chumroenvidhayakul, Siriwan Thilavech, Thavaree Abeywardena, Mahinda Adisakwattana, Sirichai |
author_sort | Chumroenvidhayakul, Siriwan |
collection | PubMed |
description | As a by-product of dragon fruit consumption, dragon fruit peel (DFP) was developed into powder as a natural ingredient. Nevertheless, the effect of DFP on the physicochemical properties of flours used in Asian food processing and cooking remains unknown. In this study, starch digestibility, thermal, pasting, and physicochemical properties of DFP and flours (potato, rice, glutinous rice, and wheat) were characterized. It was found that DFP contained 65.2% dietary fiber together with phenolic compounds, betacyanins, and antioxidant activity. The results demonstrated that DFP (from 125 to 500 mg) reduced starch digestibility of flours, rapidly digestible starch, and slowly digestible starch, along with an increased proportion of undigested starch. A marked increase in phenolic compounds, betacyanins, and antioxidant activity occurred when DFP and flour were incubated for 180 min under simulated gastrointestinal digestion. The results indicate that bioactive compounds in DFP were highly bioaccessible and remained intact after digestion. Moreover, DFP exerted a significantly lower gelatinization enthalpy of flours with increasing peak viscosity and setback with decreasing pasting temperature. FTIR confirmed the decreased ratio at 1047/1022 cm(−1), indicating the disruption of short-range orders of starch and DFP. These findings would expand the scope of DFP food applications and provide a knowledge basis for developing DFP flour-based products. |
format | Online Article Text |
id | pubmed-9321922 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93219222022-07-27 Investigating the Impact of Dragon Fruit Peel Waste on Starch Digestibility, Pasting, and Thermal Properties of Flours Used in Asia Chumroenvidhayakul, Siriwan Thilavech, Thavaree Abeywardena, Mahinda Adisakwattana, Sirichai Foods Article As a by-product of dragon fruit consumption, dragon fruit peel (DFP) was developed into powder as a natural ingredient. Nevertheless, the effect of DFP on the physicochemical properties of flours used in Asian food processing and cooking remains unknown. In this study, starch digestibility, thermal, pasting, and physicochemical properties of DFP and flours (potato, rice, glutinous rice, and wheat) were characterized. It was found that DFP contained 65.2% dietary fiber together with phenolic compounds, betacyanins, and antioxidant activity. The results demonstrated that DFP (from 125 to 500 mg) reduced starch digestibility of flours, rapidly digestible starch, and slowly digestible starch, along with an increased proportion of undigested starch. A marked increase in phenolic compounds, betacyanins, and antioxidant activity occurred when DFP and flour were incubated for 180 min under simulated gastrointestinal digestion. The results indicate that bioactive compounds in DFP were highly bioaccessible and remained intact after digestion. Moreover, DFP exerted a significantly lower gelatinization enthalpy of flours with increasing peak viscosity and setback with decreasing pasting temperature. FTIR confirmed the decreased ratio at 1047/1022 cm(−1), indicating the disruption of short-range orders of starch and DFP. These findings would expand the scope of DFP food applications and provide a knowledge basis for developing DFP flour-based products. MDPI 2022-07-08 /pmc/articles/PMC9321922/ /pubmed/35885274 http://dx.doi.org/10.3390/foods11142031 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chumroenvidhayakul, Siriwan Thilavech, Thavaree Abeywardena, Mahinda Adisakwattana, Sirichai Investigating the Impact of Dragon Fruit Peel Waste on Starch Digestibility, Pasting, and Thermal Properties of Flours Used in Asia |
title | Investigating the Impact of Dragon Fruit Peel Waste on Starch Digestibility, Pasting, and Thermal Properties of Flours Used in Asia |
title_full | Investigating the Impact of Dragon Fruit Peel Waste on Starch Digestibility, Pasting, and Thermal Properties of Flours Used in Asia |
title_fullStr | Investigating the Impact of Dragon Fruit Peel Waste on Starch Digestibility, Pasting, and Thermal Properties of Flours Used in Asia |
title_full_unstemmed | Investigating the Impact of Dragon Fruit Peel Waste on Starch Digestibility, Pasting, and Thermal Properties of Flours Used in Asia |
title_short | Investigating the Impact of Dragon Fruit Peel Waste on Starch Digestibility, Pasting, and Thermal Properties of Flours Used in Asia |
title_sort | investigating the impact of dragon fruit peel waste on starch digestibility, pasting, and thermal properties of flours used in asia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321922/ https://www.ncbi.nlm.nih.gov/pubmed/35885274 http://dx.doi.org/10.3390/foods11142031 |
work_keys_str_mv | AT chumroenvidhayakulsiriwan investigatingtheimpactofdragonfruitpeelwasteonstarchdigestibilitypastingandthermalpropertiesoffloursusedinasia AT thilavechthavaree investigatingtheimpactofdragonfruitpeelwasteonstarchdigestibilitypastingandthermalpropertiesoffloursusedinasia AT abeywardenamahinda investigatingtheimpactofdragonfruitpeelwasteonstarchdigestibilitypastingandthermalpropertiesoffloursusedinasia AT adisakwattanasirichai investigatingtheimpactofdragonfruitpeelwasteonstarchdigestibilitypastingandthermalpropertiesoffloursusedinasia |