Cargando…
Measuring Cytoskeletal Mechanical Fluctuations and Rheology with Active Micropost Arrays
The dynamics of the cellular actomyosin cytoskeleton are crucial to many aspects of cellular function. Here, we describe techniques that employ active micropost array detectors (AMPADs) to measure cytoskeletal rheology and mechanical force fluctuations. The AMPADS are arrays of flexible poly(dimethy...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321978/ https://www.ncbi.nlm.nih.gov/pubmed/35612274 http://dx.doi.org/10.1002/cpz1.433 |
_version_ | 1784756183730487296 |
---|---|
author | Shi, Yu Sivarajan, Shankar Crocker, John C. Reich, Daniel H. |
author_facet | Shi, Yu Sivarajan, Shankar Crocker, John C. Reich, Daniel H. |
author_sort | Shi, Yu |
collection | PubMed |
description | The dynamics of the cellular actomyosin cytoskeleton are crucial to many aspects of cellular function. Here, we describe techniques that employ active micropost array detectors (AMPADs) to measure cytoskeletal rheology and mechanical force fluctuations. The AMPADS are arrays of flexible poly(dimethylsiloxane) (PDMS) microposts with magnetic nanowires embedded in a subset of microposts to enable actuation of those posts via an externally applied magnetic field. Techniques are described to track the magnetic microposts’ motion with nanometer precision at up to 100 video frames per second to measure the local cellular rheology at well‐defined positions. Application of these high‐precision tracking techniques to the full array of microposts in contact with a cell also enables mapping of the cytoskeletal mechanical fluctuation dynamics with high spatial and temporal resolution. This article describes (1) the fabrication of magnetic micropost arrays, (2) measurement protocols for both local rheology and cytoskeletal force fluctuation mapping, and (3) special‐purpose software routines to reduce and analyze these data. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Fabrication of magnetic micropost arrays Basic Protocol 2: Data acquisition for cellular force fluctuations on non‐magnetic micropost arrays Basic Protocol 3: Data acquisition for local cellular rheology measurements with magnetic microposts Basic Protocol 4: Data reduction: determining microposts’ motion Basic Protocol 5: Data analysis: determining local rheology from magnetic microposts Basic Protocol 6: Data analysis for force fluctuation measurements Support Protocol 1: Fabrication of magnetic Ni nanowires by electrodeposition Support Protocol 2: Configuring Streampix for magnetic rheology measurements |
format | Online Article Text |
id | pubmed-9321978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93219782022-07-30 Measuring Cytoskeletal Mechanical Fluctuations and Rheology with Active Micropost Arrays Shi, Yu Sivarajan, Shankar Crocker, John C. Reich, Daniel H. Curr Protoc Protocol The dynamics of the cellular actomyosin cytoskeleton are crucial to many aspects of cellular function. Here, we describe techniques that employ active micropost array detectors (AMPADs) to measure cytoskeletal rheology and mechanical force fluctuations. The AMPADS are arrays of flexible poly(dimethylsiloxane) (PDMS) microposts with magnetic nanowires embedded in a subset of microposts to enable actuation of those posts via an externally applied magnetic field. Techniques are described to track the magnetic microposts’ motion with nanometer precision at up to 100 video frames per second to measure the local cellular rheology at well‐defined positions. Application of these high‐precision tracking techniques to the full array of microposts in contact with a cell also enables mapping of the cytoskeletal mechanical fluctuation dynamics with high spatial and temporal resolution. This article describes (1) the fabrication of magnetic micropost arrays, (2) measurement protocols for both local rheology and cytoskeletal force fluctuation mapping, and (3) special‐purpose software routines to reduce and analyze these data. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Fabrication of magnetic micropost arrays Basic Protocol 2: Data acquisition for cellular force fluctuations on non‐magnetic micropost arrays Basic Protocol 3: Data acquisition for local cellular rheology measurements with magnetic microposts Basic Protocol 4: Data reduction: determining microposts’ motion Basic Protocol 5: Data analysis: determining local rheology from magnetic microposts Basic Protocol 6: Data analysis for force fluctuation measurements Support Protocol 1: Fabrication of magnetic Ni nanowires by electrodeposition Support Protocol 2: Configuring Streampix for magnetic rheology measurements John Wiley and Sons Inc. 2022-05-25 2022-05 /pmc/articles/PMC9321978/ /pubmed/35612274 http://dx.doi.org/10.1002/cpz1.433 Text en © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Protocol Shi, Yu Sivarajan, Shankar Crocker, John C. Reich, Daniel H. Measuring Cytoskeletal Mechanical Fluctuations and Rheology with Active Micropost Arrays |
title | Measuring Cytoskeletal Mechanical Fluctuations and Rheology with Active Micropost Arrays |
title_full | Measuring Cytoskeletal Mechanical Fluctuations and Rheology with Active Micropost Arrays |
title_fullStr | Measuring Cytoskeletal Mechanical Fluctuations and Rheology with Active Micropost Arrays |
title_full_unstemmed | Measuring Cytoskeletal Mechanical Fluctuations and Rheology with Active Micropost Arrays |
title_short | Measuring Cytoskeletal Mechanical Fluctuations and Rheology with Active Micropost Arrays |
title_sort | measuring cytoskeletal mechanical fluctuations and rheology with active micropost arrays |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321978/ https://www.ncbi.nlm.nih.gov/pubmed/35612274 http://dx.doi.org/10.1002/cpz1.433 |
work_keys_str_mv | AT shiyu measuringcytoskeletalmechanicalfluctuationsandrheologywithactivemicropostarrays AT sivarajanshankar measuringcytoskeletalmechanicalfluctuationsandrheologywithactivemicropostarrays AT crockerjohnc measuringcytoskeletalmechanicalfluctuationsandrheologywithactivemicropostarrays AT reichdanielh measuringcytoskeletalmechanicalfluctuationsandrheologywithactivemicropostarrays |