Cargando…

Mesoionic Imines (MIIs): Strong Donors and Versatile Ligands for Transition Metals and Main Group Substrates

We report the synthesis and the reactivity of 1,2,3‐triazolin‐5‐imine type mesoionic imines (MIIs). The MIIs are accessible by a base‐mediated cycloaddition between a substituted acetonitrile and an aromatic azide, methylation by established routes and subsequent deprotonation. C=O‐stretching freque...

Descripción completa

Detalles Bibliográficos
Autores principales: Rudolf, Richard, Neuman, Nicolás I., Walter, Robert R. M., Ringenberg, Mark. R., Sarkar, Biprajit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322014/
https://www.ncbi.nlm.nih.gov/pubmed/35286004
http://dx.doi.org/10.1002/anie.202200653
Descripción
Sumario:We report the synthesis and the reactivity of 1,2,3‐triazolin‐5‐imine type mesoionic imines (MIIs). The MIIs are accessible by a base‐mediated cycloaddition between a substituted acetonitrile and an aromatic azide, methylation by established routes and subsequent deprotonation. C=O‐stretching frequencies in MII−CO(2) and −Rh(CO)(2)Cl complexes were used to determine the overall donor strength. The MIIs are stronger donors than the N‐heterocyclic imines (NHIs). MIIs are excellent ligands for main group elements and transition metals in which they display substituent‐induced fluorine‐specific interactions and undergo C−H activation. DFT calculations gave insights into the frontier orbitals of the MIIs. The calculations predict a relatively small HOMO–LUMO gap compared to other related ligands. MIIs are potentially able to act as both π‐donor and π‐acceptor ligands. This report highlights the potential of MIIs to display exciting properties with a huge potential for future development.