Cargando…

Exploration of Wedelia chinensis leaf-assisted silver nanoparticles for antioxidant, antibacterial and in vitro cytotoxic applications

Green synthetic route of silver nanoparticles (AgNPs) has already been proved to be an advantageous over other physico-chemical approaches due to its simplicity, cost effectiveness, ecofriendly and nontoxicity. In this finding, aqueous Wedelia chinensis leaf extract (WLE) mediated synthesis of AgNPs...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Merina Paul, Livingstone, Jeyanthi Rebecca, Veluswamy, Pandiyarasan, Das, Jayabrata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taiwan Food and Drug Administration 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322223/
https://www.ncbi.nlm.nih.gov/pubmed/29567263
http://dx.doi.org/10.1016/j.jfda.2017.07.014
Descripción
Sumario:Green synthetic route of silver nanoparticles (AgNPs) has already been proved to be an advantageous over other physico-chemical approaches due to its simplicity, cost effectiveness, ecofriendly and nontoxicity. In this finding, aqueous Wedelia chinensis leaf extract (WLE) mediated synthesis of AgNPs was approached. Surface plasmon resonance (SPR) band at 408 nm preliminary indicated the formation of AgNPs, while TEM and XRD characterization confirmed the formation of spherically shaped and crystalline AgNPs with an average size of 31.68 nm, respectively. The plausible biomolecules in the aqueous leaf extract responsible for the reduction and stabilization of AgNPs were identified by FTIR analysis and found to be polyphenolic groups in flavonoid. Further, synthesized AgNPs was explored for different biological applications. Biosynthesized AgNPs showed significant free radical scavenging activity as compared to Wedelia leaf extract and antibacterial activity against clinically isolated test pathogens where Gram-negative bacteria were found more susceptible to AgNPs than Gram-positive one. In addition, in vitro cytotoxic response was also evaluated on hepatocellular carcinoma Hep G2 cell lines and showed a dose-dependent cytotoxic response with an IC(50) value of 25 μg/mL.