Cargando…

Experimental sexual selection affects the evolution of physiological and life‐history traits

Sexual selection and sexual conflict are expected to affect all aspects of the phenotype, not only traits that are directly involved in reproduction. Here, we show coordinated evolution of multiple physiological and life‐history traits in response to long‐term experimental manipulation of the mating...

Descripción completa

Detalles Bibliográficos
Autores principales: Garlovsky, Martin D., Holman, Luke, Brooks, Andrew L., Novicic, Zorana K., Snook, Rhonda R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322299/
https://www.ncbi.nlm.nih.gov/pubmed/35384100
http://dx.doi.org/10.1111/jeb.14003
Descripción
Sumario:Sexual selection and sexual conflict are expected to affect all aspects of the phenotype, not only traits that are directly involved in reproduction. Here, we show coordinated evolution of multiple physiological and life‐history traits in response to long‐term experimental manipulation of the mating system in populations of Drosophila pseudoobscura. Development time was extended under polyandry relative to monogamy in both sexes, potentially due to higher investment in traits linked to sexual selection and sexual conflict. Individuals (especially males) evolving under polyandry had higher metabolic rates and locomotor activity than those evolving under monogamy. Polyandry individuals also invested more in metabolites associated with increased endurance capacity and efficient energy metabolism and regulation, namely lipids and glycogen. Finally, polyandry males were less desiccation‐ and starvation resistant than monogamy males, suggesting trade‐offs between resistance and sexually selected traits. Our results provide experimental evidence that mating systems can impose selection that influences the evolution of non‐sexual phenotypes such as development, activity, metabolism and nutrient homeostasis.