Cargando…
Application of Statistical K-Means Algorithm for University Academic Evaluation
With the globalization of higher education, academic evaluation is increasingly valued by the scientific and educational circles. Although the number of published papers of academic evaluation methods is increasing, previous research mainly focused on the method of assigning different weights for va...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322481/ https://www.ncbi.nlm.nih.gov/pubmed/35885227 http://dx.doi.org/10.3390/e24071004 |
_version_ | 1784756314963968000 |
---|---|
author | Yu, Daohua Zhou, Xin Pan, Yu Niu, Zhendong Sun, Huafei |
author_facet | Yu, Daohua Zhou, Xin Pan, Yu Niu, Zhendong Sun, Huafei |
author_sort | Yu, Daohua |
collection | PubMed |
description | With the globalization of higher education, academic evaluation is increasingly valued by the scientific and educational circles. Although the number of published papers of academic evaluation methods is increasing, previous research mainly focused on the method of assigning different weights for various indicators, which can be subjective and limited. This paper investigates the evaluation of academic performance by using the statistical K-means (SKM) algorithm to produce clusters. The core idea is mapping the evaluation data from Euclidean space to Riemannian space in which the geometric structure can be used to obtain accurate clustering results. The method can adapt to different indicators and make full use of big data. By using the K-means algorithm based on statistical manifolds, the academic evaluation results of universities can be obtained. Furthermore, through simulation experiments on the top 20 universities of China with the traditional K-means, GMM and SKM algorithms, respectively, we analyze the advantages and disadvantages of different methods. We also test the three algorithms on a UCI ML dataset. The simulation results show the advantages of the SKM algorithm. |
format | Online Article Text |
id | pubmed-9322481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93224812022-07-27 Application of Statistical K-Means Algorithm for University Academic Evaluation Yu, Daohua Zhou, Xin Pan, Yu Niu, Zhendong Sun, Huafei Entropy (Basel) Article With the globalization of higher education, academic evaluation is increasingly valued by the scientific and educational circles. Although the number of published papers of academic evaluation methods is increasing, previous research mainly focused on the method of assigning different weights for various indicators, which can be subjective and limited. This paper investigates the evaluation of academic performance by using the statistical K-means (SKM) algorithm to produce clusters. The core idea is mapping the evaluation data from Euclidean space to Riemannian space in which the geometric structure can be used to obtain accurate clustering results. The method can adapt to different indicators and make full use of big data. By using the K-means algorithm based on statistical manifolds, the academic evaluation results of universities can be obtained. Furthermore, through simulation experiments on the top 20 universities of China with the traditional K-means, GMM and SKM algorithms, respectively, we analyze the advantages and disadvantages of different methods. We also test the three algorithms on a UCI ML dataset. The simulation results show the advantages of the SKM algorithm. MDPI 2022-07-20 /pmc/articles/PMC9322481/ /pubmed/35885227 http://dx.doi.org/10.3390/e24071004 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Daohua Zhou, Xin Pan, Yu Niu, Zhendong Sun, Huafei Application of Statistical K-Means Algorithm for University Academic Evaluation |
title | Application of Statistical K-Means Algorithm for University Academic Evaluation |
title_full | Application of Statistical K-Means Algorithm for University Academic Evaluation |
title_fullStr | Application of Statistical K-Means Algorithm for University Academic Evaluation |
title_full_unstemmed | Application of Statistical K-Means Algorithm for University Academic Evaluation |
title_short | Application of Statistical K-Means Algorithm for University Academic Evaluation |
title_sort | application of statistical k-means algorithm for university academic evaluation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322481/ https://www.ncbi.nlm.nih.gov/pubmed/35885227 http://dx.doi.org/10.3390/e24071004 |
work_keys_str_mv | AT yudaohua applicationofstatisticalkmeansalgorithmforuniversityacademicevaluation AT zhouxin applicationofstatisticalkmeansalgorithmforuniversityacademicevaluation AT panyu applicationofstatisticalkmeansalgorithmforuniversityacademicevaluation AT niuzhendong applicationofstatisticalkmeansalgorithmforuniversityacademicevaluation AT sunhuafei applicationofstatisticalkmeansalgorithmforuniversityacademicevaluation |