Cargando…
Prediction of All-Cause Mortality Based on Stress/Rest Myocardial Perfusion Imaging (MPI) Using Deep Learning: A Comparison between Image and Frequency Spectra as Input
Background: Cardiovascular management and risk stratification of patients is an important issue in clinics. Patients who have experienced an adverse cardiac event are concerned for their future and want to know the survival probability. Methods: We trained eight state-of-the-art CNN models using pol...
Autores principales: | Cheng, Da-Chuan, Hsieh, Te-Chun, Hsu, Yu-Ju, Lai, Yung-Chi, Yen, Kuo-Yang, Wang, Charles C. N., Kao, Chia-Hung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322556/ https://www.ncbi.nlm.nih.gov/pubmed/35887602 http://dx.doi.org/10.3390/jpm12071105 |
Ejemplares similares
-
Phase analysis single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) detects dyssynchrony in myocardial scar and increases specificity of MPI
por: Bois, John P., et al.
Publicado: (2019) -
Design of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI)
por: Du, Yimeng, et al.
Publicado: (2013) -
Lesion-Based Bone Metastasis Detection in Chest Bone Scintigraphy Images of Prostate Cancer Patients Using Pre-Train, Negative Mining, and Deep Learning
por: Cheng, Da-Chuan, et al.
Publicado: (2021) -
MPI Learn: Distributed learning over MPI
por: Guerra Magalhaes, Filipe Pedro
Publicado: (2018) -
Resting State Functional Connectivity in Perfusion Imaging: Correlation Maps with BOLD Connectivity and Resting State Perfusion
por: Viviani, Roberto, et al.
Publicado: (2011)