Cargando…

Computational Identification and Experimental Demonstration of High‐Performance Methane Sorbents

Remarkable methane uptake is demonstrated experimentally in three metal‐organic frameworks (MOFs) identified by computational screening: UTSA‐76, UMCM‐152 and DUT‐23‐Cu. These MOFs outperform the benchmark sorbent, HKUST‐1, both volumetrically and gravimetrically, under a pressure swing of 80 to 5 b...

Descripción completa

Detalles Bibliográficos
Autores principales: Nath, Karabi, Ahmed, Alauddin, Siegel, Donald J., Matzger, Adam J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322563/
https://www.ncbi.nlm.nih.gov/pubmed/35478372
http://dx.doi.org/10.1002/anie.202203575
Descripción
Sumario:Remarkable methane uptake is demonstrated experimentally in three metal‐organic frameworks (MOFs) identified by computational screening: UTSA‐76, UMCM‐152 and DUT‐23‐Cu. These MOFs outperform the benchmark sorbent, HKUST‐1, both volumetrically and gravimetrically, under a pressure swing of 80 to 5 bar at 298 K. Although high uptake at elevated pressure is critical for achieving this performance, a low density of high‐affinity sites (coordinatively unsaturated metal centers) also contributes to a more complete release of stored gas at low pressure. The identification of these MOFs facilitates the efficient storage of natural gas via adsorption and provides further evidence of the utility of computational screening in identifying overlooked sorbents.