Cargando…
MCMCINLA Estimation of Missing Data and Its Application to Public Health Development in China in the Post-Epidemic Era
Medical data are often missing during epidemiological surveys and clinical trials. In this paper, we propose the MCMCINLA estimation method to account for missing data. We introduce a new latent class into the spatial lag model (SLM) and use a conditional autoregressive specification (CAR) spatial m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322628/ https://www.ncbi.nlm.nih.gov/pubmed/35885138 http://dx.doi.org/10.3390/e24070916 |
_version_ | 1784756351659933696 |
---|---|
author | Teng, Jiaqi Ding, Shuzhen Shi, Xiaoping Zhang, Huiguo Hu, Xijian |
author_facet | Teng, Jiaqi Ding, Shuzhen Shi, Xiaoping Zhang, Huiguo Hu, Xijian |
author_sort | Teng, Jiaqi |
collection | PubMed |
description | Medical data are often missing during epidemiological surveys and clinical trials. In this paper, we propose the MCMCINLA estimation method to account for missing data. We introduce a new latent class into the spatial lag model (SLM) and use a conditional autoregressive specification (CAR) spatial model-based approach to impute missing values, making the model fit into the integrated nested Laplace approximation (INLA) framework. Combining the advantages of both the Markov chain Monte Carlo (MCMC) and INLA frameworks, the MCMCINLA algorithm is used to implement imputation of the missing data and fit the model to derive estimates of the parameters from the posterior margins. Finally, the economic data and the hemorrhagic fever with renal syndrome (HFRS) disease data of mainland China from 2016–2018 are used as examples to explore the development of public health in China in the post-epidemic era. The results show that compared with expectation maximization (EM) and full information maximum likelihood estimation (FIML), the predicted values of the missing data obtained using our method are closer to the true values, and the spatial distribution of HFRS in China can be inferred from the imputation results with a southern-heavy and northern-light distribution. It can provide some references for the development of public health in China in the post-epidemic era. |
format | Online Article Text |
id | pubmed-9322628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93226282022-07-27 MCMCINLA Estimation of Missing Data and Its Application to Public Health Development in China in the Post-Epidemic Era Teng, Jiaqi Ding, Shuzhen Shi, Xiaoping Zhang, Huiguo Hu, Xijian Entropy (Basel) Article Medical data are often missing during epidemiological surveys and clinical trials. In this paper, we propose the MCMCINLA estimation method to account for missing data. We introduce a new latent class into the spatial lag model (SLM) and use a conditional autoregressive specification (CAR) spatial model-based approach to impute missing values, making the model fit into the integrated nested Laplace approximation (INLA) framework. Combining the advantages of both the Markov chain Monte Carlo (MCMC) and INLA frameworks, the MCMCINLA algorithm is used to implement imputation of the missing data and fit the model to derive estimates of the parameters from the posterior margins. Finally, the economic data and the hemorrhagic fever with renal syndrome (HFRS) disease data of mainland China from 2016–2018 are used as examples to explore the development of public health in China in the post-epidemic era. The results show that compared with expectation maximization (EM) and full information maximum likelihood estimation (FIML), the predicted values of the missing data obtained using our method are closer to the true values, and the spatial distribution of HFRS in China can be inferred from the imputation results with a southern-heavy and northern-light distribution. It can provide some references for the development of public health in China in the post-epidemic era. MDPI 2022-06-30 /pmc/articles/PMC9322628/ /pubmed/35885138 http://dx.doi.org/10.3390/e24070916 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Teng, Jiaqi Ding, Shuzhen Shi, Xiaoping Zhang, Huiguo Hu, Xijian MCMCINLA Estimation of Missing Data and Its Application to Public Health Development in China in the Post-Epidemic Era |
title | MCMCINLA Estimation of Missing Data and Its Application to Public Health Development in China in the Post-Epidemic Era |
title_full | MCMCINLA Estimation of Missing Data and Its Application to Public Health Development in China in the Post-Epidemic Era |
title_fullStr | MCMCINLA Estimation of Missing Data and Its Application to Public Health Development in China in the Post-Epidemic Era |
title_full_unstemmed | MCMCINLA Estimation of Missing Data and Its Application to Public Health Development in China in the Post-Epidemic Era |
title_short | MCMCINLA Estimation of Missing Data and Its Application to Public Health Development in China in the Post-Epidemic Era |
title_sort | mcmcinla estimation of missing data and its application to public health development in china in the post-epidemic era |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322628/ https://www.ncbi.nlm.nih.gov/pubmed/35885138 http://dx.doi.org/10.3390/e24070916 |
work_keys_str_mv | AT tengjiaqi mcmcinlaestimationofmissingdataanditsapplicationtopublichealthdevelopmentinchinainthepostepidemicera AT dingshuzhen mcmcinlaestimationofmissingdataanditsapplicationtopublichealthdevelopmentinchinainthepostepidemicera AT shixiaoping mcmcinlaestimationofmissingdataanditsapplicationtopublichealthdevelopmentinchinainthepostepidemicera AT zhanghuiguo mcmcinlaestimationofmissingdataanditsapplicationtopublichealthdevelopmentinchinainthepostepidemicera AT huxijian mcmcinlaestimationofmissingdataanditsapplicationtopublichealthdevelopmentinchinainthepostepidemicera |