Cargando…
Maximizing the Performance of Similarity-Based Virtual Screening Methods by Generating Synergy from the Integration of 2D and 3D Approaches
Methods for the pairwise comparison of 2D and 3D molecular structures are established approaches in virtual screening. In this work, we explored three strategies for maximizing the virtual screening performance of these methods: (i) the merging of hit lists obtained from multi-compound screening usi...
Autores principales: | Fan, Ningning, Hirte, Steffen, Kirchmair, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322642/ https://www.ncbi.nlm.nih.gov/pubmed/35887097 http://dx.doi.org/10.3390/ijms23147747 |
Ejemplares similares
-
ALADDIN: Docking Approach Augmented by Machine Learning for Protein Structure Selection Yields Superior Virtual Screening Performance
por: Fan, Ningning, et al.
Publicado: (2019) -
NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules
por: Chen, Ya, et al.
Publicado: (2019) -
Evolutionary chemical binding similarity approach integrated with 3D-QSAR method for effective virtual screening
por: Durai, Prasannavenkatesh, et al.
Publicado: (2020) -
Similarity-Based Methods and Machine Learning Approaches for Target Prediction in Early Drug Discovery: Performance and Scope
por: Mathai, Neann, et al.
Publicado: (2020) -
Development and Experimental Validation of Regularized Machine Learning Models Detecting New, Structurally Distinct Activators of PXR
por: Hirte, Steffen, et al.
Publicado: (2022)