Cargando…
Estimating the Individual Treatment Effect on Survival Time Based on Prior Knowledge and Counterfactual Prediction
The estimation of the Individual Treatment Effect (ITE) on survival time is an important research topic in clinics-based causal inference. Various representation learning methods have been proposed to deal with its three key problems, i.e., reducing selection bias, handling censored survival data, a...
Autores principales: | Zhao, Yijie, Zhou, Hao, Gu, Jin, Ye, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322711/ https://www.ncbi.nlm.nih.gov/pubmed/35885198 http://dx.doi.org/10.3390/e24070975 |
Ejemplares similares
-
Counterfactual Reasoning Underlies the Learning of Priors in Decision Making
por: Zylberberg, Ariel, et al.
Publicado: (2018) -
Causal inference for long-term survival in randomised trials with treatment switching: Should re-censoring be applied when estimating counterfactual survival times?
por: Latimer, NR, et al.
Publicado: (2018) -
Counterfactual Desirability
por: Bradley, Richard, et al.
Publicado: (2017) -
Understanding Counterfactuality: A Review of Experimental Evidence for the Dual Meaning of Counterfactuals
por: Kulakova, Eugenia, et al.
Publicado: (2016) -
Estimating the impact of implementation and timing of the COVID-19 vaccination programme in Brazil: a counterfactual analysis
por: Ferreira, Leonardo Souto, et al.
Publicado: (2022)