Cargando…
Prediction of Time-Series Transcriptomic Gene Expression Based on Long Short-Term Memory with Empirical Mode Decomposition
RNA degradation can significantly affect the results of gene expression profiling, with subsequent analysis failing to faithfully represent the initial gene expression level. It is urgent to have an artificial intelligence approach to better utilize the limited data to obtain meaningful and reliable...
Autores principales: | Zhou, Ying, Jia, Erteng, Shi, Huajuan, Liu, Zhiyu, Sheng, Yuqi, Pan, Min, Tu, Jing, Ge, Qinyu, Lu, Zuhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322773/ https://www.ncbi.nlm.nih.gov/pubmed/35886880 http://dx.doi.org/10.3390/ijms23147532 |
Ejemplares similares
-
Spatial Transcriptome Profiling of Mouse Hippocampal Single Cell Microzone in Parkinson’s Disease
por: Jia, Erteng, et al.
Publicado: (2023) -
Extracellular cell-free RNA profile in human large follicles and small follicles
por: Shi, Huajuan, et al.
Publicado: (2022) -
Comparative analysis of circular RNA enrichment methods
por: Shi, Huajuan, et al.
Publicado: (2021) -
Bias in RNA-seq Library Preparation: Current Challenges and Solutions
por: Shi, Huajuan, et al.
Publicado: (2021) -
Optimization of library preparation based on SMART for ultralow RNA-seq in mice brain tissues
por: Jia, Erteng, et al.
Publicado: (2021)