Cargando…
A Spatially Correlated Model with Generalized Autoregressive Conditionally Heteroskedastic Structure for Counts of Crimes
Crime is a negative phenomenon that affects the daily life of the population and its development. When modeling crime data, assumptions on either the spatial or the temporal relationship between observations are necessary if any statistical analysis is to be performed. In this paper, we structure sp...
Autores principales: | Escudero, Isabel, Angulo, José M., Mateu, Jorge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322816/ https://www.ncbi.nlm.nih.gov/pubmed/35885116 http://dx.doi.org/10.3390/e24070892 |
Ejemplares similares
-
Heteroskedasticity as a leading indicator of desertification in spatially explicit data
por: Seekell, David A, et al.
Publicado: (2015) -
Extracting Conditionally Heteroskedastic Components using Independent Component Analysis
por: Miettinen, Jari, et al.
Publicado: (2019) -
Genomic Prediction Accounting for Residual Heteroskedasticity
por: Ou, Zhining, et al.
Publicado: (2015) -
Estimation of the Heteroskedastic Canonical Contagion Model with Instrumental Variables
por: Ribeiro, André L. P., et al.
Publicado: (2016) -
Laplace approximation for conditional autoregressive models for spatial data of diseases
por: Wang, Guiming
Publicado: (2022)