Cargando…
Predicting Systemic Health Features from Retinal Fundus Images Using Transfer-Learning-Based Artificial Intelligence Models
While color fundus photos are used in routine clinical practice to diagnose ophthalmic conditions, evidence suggests that ocular imaging contains valuable information regarding the systemic health features of patients. These features can be identified through computer vision techniques including dee...
Autores principales: | Khan, Nergis C., Perera, Chandrashan, Dow, Eliot R., Chen, Karen M., Mahajan, Vinit B., Mruthyunjaya, Prithvi, Do, Diana V., Leng, Theodore, Myung, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322827/ https://www.ncbi.nlm.nih.gov/pubmed/35885619 http://dx.doi.org/10.3390/diagnostics12071714 |
Ejemplares similares
-
Artificial Intelligence Improves Patient Follow-Up in a Diabetic Retinopathy Screening Program
por: Dow, Eliot R, et al.
Publicado: (2023) -
AI-Human Hybrid Workflow Enhances Teleophthalmology for the Detection of Diabetic Retinopathy
por: Dow, Eliot R., et al.
Publicado: (2023) -
Cross-Platform Identification and Validation of Uveal Melanoma Vitreous Protein Biomarkers
por: Velez, Gabriel, et al.
Publicado: (2023) -
Widefield imaging of retinal and choroidal tumors
por: Callaway, Natalia F., et al.
Publicado: (2019) -
Research progress on diagnosing retinal vascular diseases based on artificial intelligence and fundus images
por: Ji, Yuke, et al.
Publicado: (2023)