Cargando…
LightFD: Real-Time Fault Diagnosis with Edge Intelligence for Power Transformers
Power fault monitoring based on acoustic waves has gained a great deal of attention in industry. Existing methods for fault diagnosis typically collect sound signals on site and transmit them to a back-end server for analysis, which may fail to provide a real-time response due to transmission packet...
Autores principales: | Fu, Xinhua, Yang, Kejun, Liu, Min, Xing, Tianzhang, Wu, Chase |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322841/ https://www.ncbi.nlm.nih.gov/pubmed/35890976 http://dx.doi.org/10.3390/s22145296 |
Ejemplares similares
-
A Dynamic Integrated Fault Diagnosis Method for Power Transformers
por: Gao, Wensheng, et al.
Publicado: (2015) -
Fault Diagnosis for Power Transformers through Semi-Supervised Transfer Learning
por: Mao, Weiyun, et al.
Publicado: (2022) -
Real-Time RISC-V-Based CAN-FD Bus Diagnosis Tool
por: Popovici, Cosmin-Andrei, et al.
Publicado: (2023) -
Real-Time Fault Detection and Condition Monitoring for Industrial Autonomous Transfer Vehicles Utilizing Edge Artificial Intelligence
por: Gültekin, Özgür, et al.
Publicado: (2022) -
Gearbox Compound Fault Diagnosis in Edge-IoT Based on Legendre Multiwavelet Transform and Convolutional Neural Network
por: Zheng, Xiaoyang, et al.
Publicado: (2023)