Cargando…
In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids
Shear jamming, a relatively new type of phase transition from discontinuous shear thickening into a solid-like state driven by shear in dense suspensions, has been shown to originate from frictional interactions between particles. However, not all dense suspensions shear jam. Dense fumed silica coll...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322945/ https://www.ncbi.nlm.nih.gov/pubmed/35890543 http://dx.doi.org/10.3390/polym14142768 |
_version_ | 1784756428844564480 |
---|---|
author | Kurkin, Anatoli Lipik, Vitali Zhang, Xin Tok, Alfred |
author_facet | Kurkin, Anatoli Lipik, Vitali Zhang, Xin Tok, Alfred |
author_sort | Kurkin, Anatoli |
collection | PubMed |
description | Shear jamming, a relatively new type of phase transition from discontinuous shear thickening into a solid-like state driven by shear in dense suspensions, has been shown to originate from frictional interactions between particles. However, not all dense suspensions shear jam. Dense fumed silica colloidal systems have wide applications in the industry of smart materials from body armor to dynamic dampers due to extremely low bulk density and high colloid stability. In this paper, we provide new evidence of shear jamming in polypropylene glycol/fumed silica suspensions using optical in situ speed recording during low-velocity impact and explain how it contributes to impact absorption. Flow rheology confirmed the presence of discontinuous shear thickening at all studied concentrations. Calculations of the flow during impact reveal that front propagation speed is 3–5 times higher than the speed of the impactor rod, which rules out jamming by densification, showing that the cause of the drastic impact absorption is the shear jamming. The main impact absorption begins when the jamming front reaches the boundary, creating a solid-like plug under the rod that confronts its movement. These results provide important insights into the impact absorption mechanism in fumed silica suspensions with a focus on shear jamming. |
format | Online Article Text |
id | pubmed-9322945 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93229452022-07-27 In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids Kurkin, Anatoli Lipik, Vitali Zhang, Xin Tok, Alfred Polymers (Basel) Article Shear jamming, a relatively new type of phase transition from discontinuous shear thickening into a solid-like state driven by shear in dense suspensions, has been shown to originate from frictional interactions between particles. However, not all dense suspensions shear jam. Dense fumed silica colloidal systems have wide applications in the industry of smart materials from body armor to dynamic dampers due to extremely low bulk density and high colloid stability. In this paper, we provide new evidence of shear jamming in polypropylene glycol/fumed silica suspensions using optical in situ speed recording during low-velocity impact and explain how it contributes to impact absorption. Flow rheology confirmed the presence of discontinuous shear thickening at all studied concentrations. Calculations of the flow during impact reveal that front propagation speed is 3–5 times higher than the speed of the impactor rod, which rules out jamming by densification, showing that the cause of the drastic impact absorption is the shear jamming. The main impact absorption begins when the jamming front reaches the boundary, creating a solid-like plug under the rod that confronts its movement. These results provide important insights into the impact absorption mechanism in fumed silica suspensions with a focus on shear jamming. MDPI 2022-07-06 /pmc/articles/PMC9322945/ /pubmed/35890543 http://dx.doi.org/10.3390/polym14142768 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kurkin, Anatoli Lipik, Vitali Zhang, Xin Tok, Alfred In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids |
title | In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids |
title_full | In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids |
title_fullStr | In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids |
title_full_unstemmed | In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids |
title_short | In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids |
title_sort | in situ observation of shear-induced jamming front propagation during low-velocity impact in polypropylene glycol/fumed silica shear thickening fluids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322945/ https://www.ncbi.nlm.nih.gov/pubmed/35890543 http://dx.doi.org/10.3390/polym14142768 |
work_keys_str_mv | AT kurkinanatoli insituobservationofshearinducedjammingfrontpropagationduringlowvelocityimpactinpolypropyleneglycolfumedsilicashearthickeningfluids AT lipikvitali insituobservationofshearinducedjammingfrontpropagationduringlowvelocityimpactinpolypropyleneglycolfumedsilicashearthickeningfluids AT zhangxin insituobservationofshearinducedjammingfrontpropagationduringlowvelocityimpactinpolypropyleneglycolfumedsilicashearthickeningfluids AT tokalfred insituobservationofshearinducedjammingfrontpropagationduringlowvelocityimpactinpolypropyleneglycolfumedsilicashearthickeningfluids |