Cargando…

Brain Tumor Segmentation Using Deep Capsule Network and Latent-Dynamic Conditional Random Fields

Because of the large variabilities in brain tumors, automating segmentation remains a difficult task. We propose an automated method to segment brain tumors by integrating the deep capsule network (CapsNet) and the latent-dynamic condition random field (LDCRF). The method consists of three main proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Elmezain, Mahmoud, Mahmoud, Amena, Mosa, Diana T., Said, Wael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322984/
https://www.ncbi.nlm.nih.gov/pubmed/35877634
http://dx.doi.org/10.3390/jimaging8070190
Descripción
Sumario:Because of the large variabilities in brain tumors, automating segmentation remains a difficult task. We propose an automated method to segment brain tumors by integrating the deep capsule network (CapsNet) and the latent-dynamic condition random field (LDCRF). The method consists of three main processes to segment the brain tumor—pre-processing, segmentation, and post-processing. In pre-processing, the N4ITK process involves correcting each MR image’s bias field before normalizing the intensity. After that, image patches are used to train CapsNet during the segmentation process. Then, with the CapsNet parameters determined, we employ image slices from an axial view to learn the LDCRF-CapsNet. Finally, we use a simple thresholding method to correct the labels of some pixels and remove small 3D-connected regions from the segmentation outcomes. On the BRATS 2015 and BRATS 2021 datasets, we trained and evaluated our method and discovered that it outperforms and can compete with state-of-the-art methods in comparable conditions.