Cargando…
Brain Tumor Segmentation Using Deep Capsule Network and Latent-Dynamic Conditional Random Fields
Because of the large variabilities in brain tumors, automating segmentation remains a difficult task. We propose an automated method to segment brain tumors by integrating the deep capsule network (CapsNet) and the latent-dynamic condition random field (LDCRF). The method consists of three main proc...
Autores principales: | Elmezain, Mahmoud, Mahmoud, Amena, Mosa, Diana T., Said, Wael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322984/ https://www.ncbi.nlm.nih.gov/pubmed/35877634 http://dx.doi.org/10.3390/jimaging8070190 |
Ejemplares similares
-
Breast Ultrasound Images Augmentation and Segmentation Using GAN with Identity Block and Modified U-Net 3+
por: Alruily, Meshrif, et al.
Publicado: (2023) -
Multi-Layer Preprocessing and U-Net with Residual Attention Block for Retinal Blood Vessel Segmentation
por: Alsayat, Ahmed, et al.
Publicado: (2023) -
Melanoma segmentation using deep learning with test-time augmentations and conditional random fields
por: Ashraf, Hassan, et al.
Publicado: (2022) -
Image Semantic Segmentation Method Based on Deep Fusion Network and Conditional Random Field
por: Wang, Shuo, et al.
Publicado: (2022) -
Henry gas solubility optimization double machine learning classifier for neurosurgical patients
por: Mosa, Diana T., et al.
Publicado: (2023)