Cargando…

Synthesis and Characterization of High Viscosity Cationic Poly(Proline-Epichlorohydrin) Composite Polymer with Antibacterial Functionalities

We report microbial resistance and catalytic activity of high viscosity cationic poly(proline-epichlorohydrin) composite (PRO-EPI) in the aqueous system. The PRO-EPI was prepared by a simple polycondensation, followed by FTIR, (1)H NMR, SEM, DLS, viscosity, and DSC/TGA characterization. Several conc...

Descripción completa

Detalles Bibliográficos
Autores principales: Nayunigari, Mithil Kumar, Suri, Rominder, Andaluri, Gangadhar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323103/
https://www.ncbi.nlm.nih.gov/pubmed/35890574
http://dx.doi.org/10.3390/polym14142797
Descripción
Sumario:We report microbial resistance and catalytic activity of high viscosity cationic poly(proline-epichlorohydrin) composite (PRO-EPI) in the aqueous system. The PRO-EPI was prepared by a simple polycondensation, followed by FTIR, (1)H NMR, SEM, DLS, viscosity, and DSC/TGA characterization. Several concentrations of the PRO-EPI were tested against Gram-negative (E. coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) microorganisms. The antimicrobial screening revealed that PRO-EPI was a potent antimicrobial agent with the least inhibitory concentrations (MICs) of 128 µg/mL against Gram-negative microorganisms. The PRO-EPI indicated no inhibitory effect against Gram-positive microorganisms. It was determined that PRO-EPI contains polymeric-quaternary ammonium compounds that inactivate the Gram-negative microorganisms by a dual mode of action and carries domains for electrostatic interaction with the microbial membrane and an intracellular target. To study the removal of toxic industrial wastewater, congo red (CR) was tested using sodium borohydride as a reducing agent. Adsorption was achieved within 20 min at a rate constant of 0.92 ks(−1). UV–vis spectra showed that the removal of CR in the reaction solution was due to the breakup of the azo (–N=N–) bonds and adsorption of aromatic fragments. PRO is biodegradable and non-toxic, and PRO-EPI was found to be both antimicrobial and also acts as a catalyst for the removal of congo red dye.