Cargando…

Identification of Glaesserella parasuis and Differentiation of Its 15 Serovars Using High-Resolution Melting Assays

Glaesserella parasuis is the etiological agent of Glässer’s disease, which is associated with polyserositis and arthritis and has a significant impact on the economy of the pig production industry. For the optimal surveillance of this pathogen, as well as for the investigation of G. parasuis-associa...

Descripción completa

Detalles Bibliográficos
Autores principales: Scherrer, Simone, Rademacher, Fenja, Stephan, Roger, Peterhans, Sophie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323117/
https://www.ncbi.nlm.nih.gov/pubmed/35889997
http://dx.doi.org/10.3390/pathogens11070752
Descripción
Sumario:Glaesserella parasuis is the etiological agent of Glässer’s disease, which is associated with polyserositis and arthritis and has a significant impact on the economy of the pig production industry. For the optimal surveillance of this pathogen, as well as for the investigation of G. parasuis-associated diseases, it is crucial to identify G. parasuis at the serovar level. In this work, we designed and developed new high-resolution melting (HRM) approaches, namely, the species-specific GPS-HRM1 and two serovar-specific HRM assays (GPS-HRM2 and GPS-HRM3), and evaluated the sensitivity and specificity of the assays. The HRM assays demonstrated good sensitivity, with 12.5 fg–1.25 pg of input DNA for GPS-HRM1 and 125 fg–12.5 pg for GPS-HRM2 and GPS-HRM3, as well as a specificity of 100% for the identification of all recognized 15 G. parasuis serovars. Eighteen clinical isolates obtained between 2014 and 2022 in Switzerland were tested by applying the developed HRM assays, which revealed a heterogeneous distribution of serovars 2, 7, 4, 13, 1, and 14. The combination with virulence marker vtaA (virulence-associated trimeric autotransporters) allows for the prediction of potentially virulent strains. The assays are simple to execute and enable a reliable low-cost approach, thereby refining currently available diagnostic tools.