Cargando…
Thermally Activable Bistetrazoles for Elastomers Crosslinking
Sulfur vulcanization is the most used method for curing of natural and synthetic rubbers. The crosslinking degree achieved is usually controlled by adding proper quantities of accelerants, activators, co-activators, retardants, and inhibitors, and influences the hardness, elasticity, hysteresis of e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323196/ https://www.ncbi.nlm.nih.gov/pubmed/35890695 http://dx.doi.org/10.3390/polym14142919 |
_version_ | 1784756490941235200 |
---|---|
author | Monti, Mauro Giannini, Luca Tadiello, Luciano Guerra, Silvia Papagni, Antonio Vaghi, Luca |
author_facet | Monti, Mauro Giannini, Luca Tadiello, Luciano Guerra, Silvia Papagni, Antonio Vaghi, Luca |
author_sort | Monti, Mauro |
collection | PubMed |
description | Sulfur vulcanization is the most used method for curing of natural and synthetic rubbers. The crosslinking degree achieved is usually controlled by adding proper quantities of accelerants, activators, co-activators, retardants, and inhibitors, and influences the hardness, elasticity, hysteresis of elastomers and, consequently, the properties and behavior of the materials that incorporate them. Despite the fine tuning pursued over the years, sulfur crosslinking is still difficult to control both in terms of degree and homogeneity of cross-link. Addition of thermally activable bifunctional reagents able to crosslink the polymer matrix through covalent bonds could be a strategy to modulate and control finely the reticulation grade of elastomers. Tetrazoles can form highly reactive nitrilimines by thermal treatment at appropriate temperature, which can react with the vinyl double bonds present in the rubber. In this work a set of bis-tetrazoles were synthesized and those with the right activation temperatures were used for the curing of styrene-butadiene rubber, acting both as single crosslinkers and together with classic sulfur-based ones. The addition of bistetrazoles simplified and made more efficient the compounding process, allowing to prolong the mixing until optimum dispersion and homogeneity were obtained. Moreover, they led to an improvement in the hysteretic properties of the compound and to the reduction of the non-linearity of the dynamic behavior (Payne effect). |
format | Online Article Text |
id | pubmed-9323196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93231962022-07-27 Thermally Activable Bistetrazoles for Elastomers Crosslinking Monti, Mauro Giannini, Luca Tadiello, Luciano Guerra, Silvia Papagni, Antonio Vaghi, Luca Polymers (Basel) Article Sulfur vulcanization is the most used method for curing of natural and synthetic rubbers. The crosslinking degree achieved is usually controlled by adding proper quantities of accelerants, activators, co-activators, retardants, and inhibitors, and influences the hardness, elasticity, hysteresis of elastomers and, consequently, the properties and behavior of the materials that incorporate them. Despite the fine tuning pursued over the years, sulfur crosslinking is still difficult to control both in terms of degree and homogeneity of cross-link. Addition of thermally activable bifunctional reagents able to crosslink the polymer matrix through covalent bonds could be a strategy to modulate and control finely the reticulation grade of elastomers. Tetrazoles can form highly reactive nitrilimines by thermal treatment at appropriate temperature, which can react with the vinyl double bonds present in the rubber. In this work a set of bis-tetrazoles were synthesized and those with the right activation temperatures were used for the curing of styrene-butadiene rubber, acting both as single crosslinkers and together with classic sulfur-based ones. The addition of bistetrazoles simplified and made more efficient the compounding process, allowing to prolong the mixing until optimum dispersion and homogeneity were obtained. Moreover, they led to an improvement in the hysteretic properties of the compound and to the reduction of the non-linearity of the dynamic behavior (Payne effect). MDPI 2022-07-19 /pmc/articles/PMC9323196/ /pubmed/35890695 http://dx.doi.org/10.3390/polym14142919 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Monti, Mauro Giannini, Luca Tadiello, Luciano Guerra, Silvia Papagni, Antonio Vaghi, Luca Thermally Activable Bistetrazoles for Elastomers Crosslinking |
title | Thermally Activable Bistetrazoles for Elastomers Crosslinking |
title_full | Thermally Activable Bistetrazoles for Elastomers Crosslinking |
title_fullStr | Thermally Activable Bistetrazoles for Elastomers Crosslinking |
title_full_unstemmed | Thermally Activable Bistetrazoles for Elastomers Crosslinking |
title_short | Thermally Activable Bistetrazoles for Elastomers Crosslinking |
title_sort | thermally activable bistetrazoles for elastomers crosslinking |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323196/ https://www.ncbi.nlm.nih.gov/pubmed/35890695 http://dx.doi.org/10.3390/polym14142919 |
work_keys_str_mv | AT montimauro thermallyactivablebistetrazolesforelastomerscrosslinking AT gianniniluca thermallyactivablebistetrazolesforelastomerscrosslinking AT tadielloluciano thermallyactivablebistetrazolesforelastomerscrosslinking AT guerrasilvia thermallyactivablebistetrazolesforelastomerscrosslinking AT papagniantonio thermallyactivablebistetrazolesforelastomerscrosslinking AT vaghiluca thermallyactivablebistetrazolesforelastomerscrosslinking |