Cargando…
Nanoindentation of Multifunctional Smart Composites
Three multifunctional smart composites for next-generation applications have been studied differently through versatile nanoindentation investigation techniques. They are used in order to determine peculiarities and specific properties for the different composites and to study the charge/matrix, cha...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323359/ https://www.ncbi.nlm.nih.gov/pubmed/35890721 http://dx.doi.org/10.3390/polym14142945 |
_version_ | 1784756531252690944 |
---|---|
author | Zhang, Zhenxue Bellisario, Denise Quadrini, Fabrizio Jestin, Simon Ravanelli, Francesca Castello, Mauro Li, Xiaoying Dong, Hanshan |
author_facet | Zhang, Zhenxue Bellisario, Denise Quadrini, Fabrizio Jestin, Simon Ravanelli, Francesca Castello, Mauro Li, Xiaoying Dong, Hanshan |
author_sort | Zhang, Zhenxue |
collection | PubMed |
description | Three multifunctional smart composites for next-generation applications have been studied differently through versatile nanoindentation investigation techniques. They are used in order to determine peculiarities and specific properties for the different composites and to study the charge/matrix, charge/surface, or smart functions interactions. At first, a mapping indentation test was used to check the distribution of hardness and modulus across a large region to examine any non-uniformity due to structural anomalies or changes in properties for a carbon nanotubes (CNTs)-reinforced polypropylene (PP V-2) nanocomposite. This smart composite is suitable to be used in axial impeller fans and the results can be used to improve the process of the composite produced by injection moulding. Secondly, the interfacial properties of the carbon fibre (CF) and the resin were evaluated by a push-out method utilizing the smaller indentation tip to target the individual CF and apply load to measure its displacement under loads. This is useful to evaluate the effectiveness of the surface modification on the CFs, such as sizing. Finally, nanoindentation at different temperatures was used for the probing of the in situ response of smart shape memory polymer composite (SMPC) usable in grabbing devices for aerospace applications. Furthermore, the triggering temperature of the shape memory polymer response can be determined by observing the change of indentations after the heating and cooling cycles. |
format | Online Article Text |
id | pubmed-9323359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93233592022-07-27 Nanoindentation of Multifunctional Smart Composites Zhang, Zhenxue Bellisario, Denise Quadrini, Fabrizio Jestin, Simon Ravanelli, Francesca Castello, Mauro Li, Xiaoying Dong, Hanshan Polymers (Basel) Article Three multifunctional smart composites for next-generation applications have been studied differently through versatile nanoindentation investigation techniques. They are used in order to determine peculiarities and specific properties for the different composites and to study the charge/matrix, charge/surface, or smart functions interactions. At first, a mapping indentation test was used to check the distribution of hardness and modulus across a large region to examine any non-uniformity due to structural anomalies or changes in properties for a carbon nanotubes (CNTs)-reinforced polypropylene (PP V-2) nanocomposite. This smart composite is suitable to be used in axial impeller fans and the results can be used to improve the process of the composite produced by injection moulding. Secondly, the interfacial properties of the carbon fibre (CF) and the resin were evaluated by a push-out method utilizing the smaller indentation tip to target the individual CF and apply load to measure its displacement under loads. This is useful to evaluate the effectiveness of the surface modification on the CFs, such as sizing. Finally, nanoindentation at different temperatures was used for the probing of the in situ response of smart shape memory polymer composite (SMPC) usable in grabbing devices for aerospace applications. Furthermore, the triggering temperature of the shape memory polymer response can be determined by observing the change of indentations after the heating and cooling cycles. MDPI 2022-07-20 /pmc/articles/PMC9323359/ /pubmed/35890721 http://dx.doi.org/10.3390/polym14142945 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Zhenxue Bellisario, Denise Quadrini, Fabrizio Jestin, Simon Ravanelli, Francesca Castello, Mauro Li, Xiaoying Dong, Hanshan Nanoindentation of Multifunctional Smart Composites |
title | Nanoindentation of Multifunctional Smart Composites |
title_full | Nanoindentation of Multifunctional Smart Composites |
title_fullStr | Nanoindentation of Multifunctional Smart Composites |
title_full_unstemmed | Nanoindentation of Multifunctional Smart Composites |
title_short | Nanoindentation of Multifunctional Smart Composites |
title_sort | nanoindentation of multifunctional smart composites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323359/ https://www.ncbi.nlm.nih.gov/pubmed/35890721 http://dx.doi.org/10.3390/polym14142945 |
work_keys_str_mv | AT zhangzhenxue nanoindentationofmultifunctionalsmartcomposites AT bellisariodenise nanoindentationofmultifunctionalsmartcomposites AT quadrinifabrizio nanoindentationofmultifunctionalsmartcomposites AT jestinsimon nanoindentationofmultifunctionalsmartcomposites AT ravanellifrancesca nanoindentationofmultifunctionalsmartcomposites AT castellomauro nanoindentationofmultifunctionalsmartcomposites AT lixiaoying nanoindentationofmultifunctionalsmartcomposites AT donghanshan nanoindentationofmultifunctionalsmartcomposites |