Cargando…
An Efficient YOLO Algorithm with an Attention Mechanism for Vision-Based Defect Inspection Deployed on FPGA
Industry 4.0 features intelligent manufacturing. Among them, the vision-based defect inspection algorithm is remarkable for quality control in parts manufacturing. With the help of AI and machine learning, auto-adaptive instead of manual operation is achievable in this field, and much progress has b...
Autores principales: | Yu, Longzhen, Zhu, Jianhua, Zhao, Qian, Wang, Zhixian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323378/ https://www.ncbi.nlm.nih.gov/pubmed/35888875 http://dx.doi.org/10.3390/mi13071058 |
Ejemplares similares
-
EFC-YOLO: An Efficient Surface-Defect-Detection Algorithm for Steel Strips
por: Li, Yanshun, et al.
Publicado: (2023) -
FPGA-Based Acceleration on Additive Manufacturing Defects Inspection
por: Luo, Yawen, et al.
Publicado: (2021) -
CAA-YOLO: Combined-Attention-Augmented YOLO for Infrared Ocean Ships Detection
por: Ye, Jing, et al.
Publicado: (2022) -
Defect Inspection Using Modified YoloV4 on a Stitched Image of a Spinning Tool
por: Lin, Bor-Haur, et al.
Publicado: (2023) -
PHAM-YOLO: A Parallel Hybrid Attention Mechanism Network for Defect Detection of Meter in Substation
por: Dong, Hao, et al.
Publicado: (2023)