Cargando…

Anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics

Coastal waters are a major source of marine methane to the atmosphere. Particularly high concentrations of this potent greenhouse gas are found in anoxic waters, but it remains unclear if and to what extent anaerobic methanotrophs mitigate the methane flux. Here we investigate the long‐term dynamics...

Descripción completa

Detalles Bibliográficos
Autores principales: Steinsdóttir, Herdís G. R., Gómez‐Ramírez, Eddy, Mhatre, Snehit, Schauberger, Clemens, Bertagnolli, Anthony D., Pratte, Zoe A., Stewart, Frank J., Thamdrup, Bo, Bristow, Laura A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323439/
https://www.ncbi.nlm.nih.gov/pubmed/35415879
http://dx.doi.org/10.1111/1462-2920.16003
_version_ 1784756550880985088
author Steinsdóttir, Herdís G. R.
Gómez‐Ramírez, Eddy
Mhatre, Snehit
Schauberger, Clemens
Bertagnolli, Anthony D.
Pratte, Zoe A.
Stewart, Frank J.
Thamdrup, Bo
Bristow, Laura A.
author_facet Steinsdóttir, Herdís G. R.
Gómez‐Ramírez, Eddy
Mhatre, Snehit
Schauberger, Clemens
Bertagnolli, Anthony D.
Pratte, Zoe A.
Stewart, Frank J.
Thamdrup, Bo
Bristow, Laura A.
author_sort Steinsdóttir, Herdís G. R.
collection PubMed
description Coastal waters are a major source of marine methane to the atmosphere. Particularly high concentrations of this potent greenhouse gas are found in anoxic waters, but it remains unclear if and to what extent anaerobic methanotrophs mitigate the methane flux. Here we investigate the long‐term dynamics in methanotrophic activity and the methanotroph community in the coastal oxygen minimum zone (OMZ) of Golfo Dulce, Costa Rica, combining biogeochemical analyses, experimental incubations and 16S rRNA gene sequencing over 3 consecutive years. Our results demonstrate a stable redox zonation across the years with high concentrations of methane (up to 1.7 μmol L(−1)) in anoxic bottom waters. However, we also measured high activities of anaerobic methane oxidation in the OMZ core (rate constant, k, averaging 30 yr(−1) in 2018 and 8 yr(−1) in 2019–2020). The OPU3 and Deep Sea‐1 clades of the Methylococcales were implicated as conveyors of the activity, peaking in relative abundance 5–25 m below the oxic–anoxic interface and in the deep anoxic water respectively. Although their genetic capacity for anaerobic methane oxidation remains unexplored, their sustained high relative abundance indicates an adaptation of these clades to the anoxic, methane‐rich OMZ environment, allowing them to play major roles in mitigating methane fluxes.
format Online
Article
Text
id pubmed-9323439
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-93234392022-07-30 Anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics Steinsdóttir, Herdís G. R. Gómez‐Ramírez, Eddy Mhatre, Snehit Schauberger, Clemens Bertagnolli, Anthony D. Pratte, Zoe A. Stewart, Frank J. Thamdrup, Bo Bristow, Laura A. Environ Microbiol Research Articles Coastal waters are a major source of marine methane to the atmosphere. Particularly high concentrations of this potent greenhouse gas are found in anoxic waters, but it remains unclear if and to what extent anaerobic methanotrophs mitigate the methane flux. Here we investigate the long‐term dynamics in methanotrophic activity and the methanotroph community in the coastal oxygen minimum zone (OMZ) of Golfo Dulce, Costa Rica, combining biogeochemical analyses, experimental incubations and 16S rRNA gene sequencing over 3 consecutive years. Our results demonstrate a stable redox zonation across the years with high concentrations of methane (up to 1.7 μmol L(−1)) in anoxic bottom waters. However, we also measured high activities of anaerobic methane oxidation in the OMZ core (rate constant, k, averaging 30 yr(−1) in 2018 and 8 yr(−1) in 2019–2020). The OPU3 and Deep Sea‐1 clades of the Methylococcales were implicated as conveyors of the activity, peaking in relative abundance 5–25 m below the oxic–anoxic interface and in the deep anoxic water respectively. Although their genetic capacity for anaerobic methane oxidation remains unexplored, their sustained high relative abundance indicates an adaptation of these clades to the anoxic, methane‐rich OMZ environment, allowing them to play major roles in mitigating methane fluxes. John Wiley & Sons, Inc. 2022-04-25 2022-05 /pmc/articles/PMC9323439/ /pubmed/35415879 http://dx.doi.org/10.1111/1462-2920.16003 Text en © 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Steinsdóttir, Herdís G. R.
Gómez‐Ramírez, Eddy
Mhatre, Snehit
Schauberger, Clemens
Bertagnolli, Anthony D.
Pratte, Zoe A.
Stewart, Frank J.
Thamdrup, Bo
Bristow, Laura A.
Anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics
title Anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics
title_full Anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics
title_fullStr Anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics
title_full_unstemmed Anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics
title_short Anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics
title_sort anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323439/
https://www.ncbi.nlm.nih.gov/pubmed/35415879
http://dx.doi.org/10.1111/1462-2920.16003
work_keys_str_mv AT steinsdottirherdisgr anaerobicmethaneoxidationinacoastaloxygenminimumzonespatialandtemporaldynamics
AT gomezramirezeddy anaerobicmethaneoxidationinacoastaloxygenminimumzonespatialandtemporaldynamics
AT mhatresnehit anaerobicmethaneoxidationinacoastaloxygenminimumzonespatialandtemporaldynamics
AT schaubergerclemens anaerobicmethaneoxidationinacoastaloxygenminimumzonespatialandtemporaldynamics
AT bertagnollianthonyd anaerobicmethaneoxidationinacoastaloxygenminimumzonespatialandtemporaldynamics
AT prattezoea anaerobicmethaneoxidationinacoastaloxygenminimumzonespatialandtemporaldynamics
AT stewartfrankj anaerobicmethaneoxidationinacoastaloxygenminimumzonespatialandtemporaldynamics
AT thamdrupbo anaerobicmethaneoxidationinacoastaloxygenminimumzonespatialandtemporaldynamics
AT bristowlauraa anaerobicmethaneoxidationinacoastaloxygenminimumzonespatialandtemporaldynamics