Cargando…
Machine Learning Quantitative Structure–Property Relationships as a Function of Ionic Liquid Cations for the Gas-Ionic Liquid Partition Coefficient of Hydrocarbons
Ionic liquids (ILs) are known for their unique characteristics as solvents and electrolytes. Therefore, new ILs are being developed and adapted as innovative chemical environments for different applications in which their properties need to be understood on a molecular level. Computational data-driv...
Autores principales: | Toots, Karl Marti, Sild, Sulev, Leis, Jaan, Acree, William E., Maran, Uko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323540/ https://www.ncbi.nlm.nih.gov/pubmed/35886881 http://dx.doi.org/10.3390/ijms23147534 |
Ejemplares similares
-
QSAR DataBank - an approach for the digital organization and archiving of QSAR model information
por: Ruusmann, Villu, et al.
Publicado: (2014) -
Intrinsic Aqueous Solubility: Mechanistically Transparent Data-Driven Modeling of Drug Substances
por: Oja, Mare, et al.
Publicado: (2022) -
Cationic clustering influences the phase behaviour of ionic liquids
por: Niemann, Thomas, et al.
Publicado: (2018) -
Effect of methylation of ionic liquids on the gas separation performance of ionic liquid/metal–organic framework composites
por: Nozari, Vahid, et al.
Publicado: (2018) -
Affinity Ionic Liquids for Chemoselective Gas Sensing
por: Chang, Albert, et al.
Publicado: (2018)