Cargando…
On the Distribution of the Information Density of Gaussian Random Vectors: Explicit Formulas and Tight Approximations
Based on the canonical correlation analysis, we derive series representations of the probability density function (PDF) and the cumulative distribution function (CDF) of the information density of arbitrary Gaussian random vectors as well as a general formula to calculate the central moments. Using...
Autores principales: | Huffmann, Jonathan E. W., Mittelbach, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323744/ https://www.ncbi.nlm.nih.gov/pubmed/35885147 http://dx.doi.org/10.3390/e24070924 |
Ejemplares similares
-
Explicit formulae for the peak time of an epidemic from the SIR model. Which approximant to use?
por: Kröger, Martin, et al.
Publicado: (2021) -
Approximating Hidden Gaussian Markov Random Fields
por: Rue, H, et al.
Publicado: (2003) -
Analysis of TDMP Algorithm of LDPC Codes Based on Density Evolution and Gaussian Approximation
por: Wang, Xiumin, et al.
Publicado: (2019) -
Approximate Inference for Hierarchical Gaussian Markov Random Fields Models
por: Rue, H, et al.
Publicado: (2005) -
Gaussian quadrature formulas
por: Stroud, A. H.
Publicado: (1966)