Cargando…
Applying a deep residual network coupling with transfer learning for recyclable waste sorting
Recyclable waste sorting has become a key step for promoting the development of a circular economy with the gradual realization of carbon neutrality around the world. This study aims to develop an intelligent and efficient method for recyclable waste sorting by the method of deep learning. Thus, RWN...
Autores principales: | Lin, Kunsen, Zhao, Youcai, Gao, Xiaofeng, Zhang, Meilan, Zhao, Chunlong, Peng, Lu, Zhang, Qian, Zhou, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323877/ https://www.ncbi.nlm.nih.gov/pubmed/35882737 http://dx.doi.org/10.1007/s11356-022-22167-w |
Ejemplares similares
-
MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal solid waste sorting
por: Lin, Kunsen, et al.
Publicado: (2023) -
An Intelligent Waste-Sorting and Recycling Device Based on Improved EfficientNet
por: Feng, Zhicheng, et al.
Publicado: (2022) -
Sorting Center Value Identification of “Internet + Recycling” Based on Transfer Clustering
por: Cheng, Cheng, et al.
Publicado: (2022) -
Municipal solid waste incineration residues recycled for typical construction materials—a review
por: Chen, Dan, et al.
Publicado: (2022) -
Recognition of Rare Microfossils Using Transfer Learning and Deep Residual Networks
por: Wang, Bin, et al.
Publicado: (2022)