Cargando…

In Silico Analysis of PORD Mutations on the 3D Structure of P450 Oxidoreductase

Cytochrome P450 oxidoreductase (POR) is a membrane-bound flavoprotein that helps in transferring electrons from its NADPH domain to all cytochrome P450 (CYP450) enzymes. Mutations in the POR gene could severely affect the metabolism of steroid hormones and the development of skeletal muscles, a cond...

Descripción completa

Detalles Bibliográficos
Autores principales: Nurhafizuddin, Muhammad, Azizi, Aziemah, Ming, Long Chiau, Shafqat, Naeem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323898/
https://www.ncbi.nlm.nih.gov/pubmed/35889519
http://dx.doi.org/10.3390/molecules27144646
Descripción
Sumario:Cytochrome P450 oxidoreductase (POR) is a membrane-bound flavoprotein that helps in transferring electrons from its NADPH domain to all cytochrome P450 (CYP450) enzymes. Mutations in the POR gene could severely affect the metabolism of steroid hormones and the development of skeletal muscles, a condition known as Cytochrome P450 oxidoreductase deficiency (PORD). PORD is associated with clinical presentations of disorders of sex development, Antley and Bixler’s syndrome (ABS), as well as an abnormal steroid hormone profile. We have performed an in silico analysis of POR 3D X-ray protein crystal structure to study the effects of reported mutations on the POR enzyme structure. A total of 32 missense mutations were identified, from 170 PORD patients, and mapped on the 3D crystal structure of the POR enzyme. In addition, five of the missense mutations (R457H, A287P, D210G, Y181D and Y607C) were further selected for an in-depth in silico analysis to correlate the observed changes in POR protein structure with the clinical phenotypes observed in PORD patients. Overall, missense mutations found in the binding sites of POR cofactors could lead to a severe form of PORD, emphasizing the importance of POR cofactor binding domains in transferring electrons to the CYP450 enzyme family.