Cargando…
NrtNet: An Unsupervised Method for 3D Non-Rigid Point Cloud Registration Based on Transformer
Self-attention networks have revolutionized the field of natural language processing and have also made impressive progress in image analysis tasks. Corrnet3D proposes the idea of first obtaining the point cloud correspondence in point cloud registration. Inspired by these successes, we propose an u...
Autores principales: | Hu, Xiaobo, Zhang, Dejun, Chen, Jinzhi, Wu, Yiqi, Chen, Yilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324002/ https://www.ncbi.nlm.nih.gov/pubmed/35890808 http://dx.doi.org/10.3390/s22145128 |
Ejemplares similares
-
TIF-Reg: Point Cloud Registration with Transform-Invariant Features in SE(3)
por: Chen, Baifan, et al.
Publicado: (2021) -
Non-rigid point cloud registration based lung motion estimation using tangent-plane distance
por: Rao, Fan, et al.
Publicado: (2018) -
A Fully Unsupervised Deep Learning Framework for Non-Rigid Fundus Image Registration
por: Benvenuto, Giovana A., et al.
Publicado: (2022) -
TransNet: Transformer-Based Point Cloud Sampling Network
por: Lee, Hookyung, et al.
Publicado: (2023) -
Hierarchical Optimization of 3D Point Cloud Registration
por: Liu, Huikai, et al.
Publicado: (2020)