Cargando…
Sterically Demanding Flexible Phosphoric Acids for Constructing Efficient and Multi‐Purpose Asymmetric Organocatalysts
Herein, we present a novel approach for various asymmetric transformations of cyclic enones. The combination of readily accessible chiral diamines and sterically demanding flexible phosphoric acids resulted in a simple and highly tunable catalyst framework. The careful optimization of the catalyst c...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324080/ https://www.ncbi.nlm.nih.gov/pubmed/35413147 http://dx.doi.org/10.1002/anie.202202189 |
Sumario: | Herein, we present a novel approach for various asymmetric transformations of cyclic enones. The combination of readily accessible chiral diamines and sterically demanding flexible phosphoric acids resulted in a simple and highly tunable catalyst framework. The careful optimization of the catalyst components led to the identification of a particularly powerful and multi‐purpose organocatalyst, which was successfully applied for asymmetric epoxidations, aziridinations, aza‐Michael‐initiated cyclizations, as well as for a novel Robinson‐like Michael‐initiated ring closure/aldol cyclization. High catalytic activities and excellent stereocontrol was observed for all four reaction types, indicating the excellent versatility of our catalytic system. Furthermore, a simple change in the diamine's configuration provided easy access to both product antipodes in all cases. |
---|