Cargando…

Contribution of genome‐scale metabolic modelling to niche theory

Standard niche modelling is based on probabilistic inference from organismal occurrence data but does not benefit yet from genome‐scale descriptions of these organisms. This study overcomes this shortcoming by proposing a new conceptual niche that resumes the whole metabolic capabilities of an organ...

Descripción completa

Detalles Bibliográficos
Autores principales: Régimbeau, Antoine, Budinich, Marko, Larhlimi, Abdelhalim, Pierella Karlusich, Juan José, Aumont, Olivier, Memery, Laurent, Bowler, Chris, Eveillard, Damien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324083/
https://www.ncbi.nlm.nih.gov/pubmed/35384214
http://dx.doi.org/10.1111/ele.13954
Descripción
Sumario:Standard niche modelling is based on probabilistic inference from organismal occurrence data but does not benefit yet from genome‐scale descriptions of these organisms. This study overcomes this shortcoming by proposing a new conceptual niche that resumes the whole metabolic capabilities of an organism. The so‐called metabolic niche resumes well‐known traits such as nutrient needs and their dependencies for survival. Despite the computational challenge, its implementation allows the detection of traits and the formal comparison of niches of different organisms, emphasising that the presence–absence of functional genes is not enough to approximate the phenotype. Further statistical exploration of an organism's niche sheds light on genes essential for the metabolic niche and their role in understanding various biological experiments, such as transcriptomics, paving the way for incorporating better genome‐scale description in ecological studies.