Cargando…
Liposome Formulation and In Vitro Testing in Non-Physiological Conditions Addressed to Ex Vivo Kidney Perfusion
This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more ex...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324182/ https://www.ncbi.nlm.nih.gov/pubmed/35887348 http://dx.doi.org/10.3390/ijms23147999 |
_version_ | 1784756744838184960 |
---|---|
author | Pisani, Silvia Chiesa, Enrica Genta, Ida Dorati, Rossella Gregorini, Marilena Grignano, Maria Antonietta Ramus, Marina Ceccarelli, Gabriele Croce, Stefania Valsecchi, Chiara Monti, Manuela Rampino, Teresa Conti, Bice |
author_facet | Pisani, Silvia Chiesa, Enrica Genta, Ida Dorati, Rossella Gregorini, Marilena Grignano, Maria Antonietta Ramus, Marina Ceccarelli, Gabriele Croce, Stefania Valsecchi, Chiara Monti, Manuela Rampino, Teresa Conti, Bice |
author_sort | Pisani, Silvia |
collection | PubMed |
description | This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more exposed to ischemic/reperfusion injury compared to those from standard donors. Two liposome preparation techniques, thin film hydration and microfluidic techniques, are explored for formulating liposomes loaded with two model proteins, myoglobin and bovine serum albumin. The protein-loaded liposomes are characterized for their size by DLS and morphology by TEM. Protein releases from the liposomes are tested in PERF-GEN perfusion fluid, 4 °C, and compared to the in vitro protein release in PBS, 37 °C. Fluorescent liposome uptake is analyzed by fluorescent microscope in vitro on epithelial tubular renal cell cultures and ex vivo on isolated pig kidney in hypothermic perfusion conditions. The results show that microfluidics are a superior technique for obtaining reproducible spherical liposomes with suitable size below 200 nm. Protein encapsulation efficiency is affected by its molecular weight and isoelectric point. Lowering incubation temperature slows down the proteins release; the perfusion fluid significantly affects the release of proteins sensitive to ionic media (such as BSA). Liposomes are taken up by epithelial tubular renal cells in two hours’ incubation time. |
format | Online Article Text |
id | pubmed-9324182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93241822022-07-27 Liposome Formulation and In Vitro Testing in Non-Physiological Conditions Addressed to Ex Vivo Kidney Perfusion Pisani, Silvia Chiesa, Enrica Genta, Ida Dorati, Rossella Gregorini, Marilena Grignano, Maria Antonietta Ramus, Marina Ceccarelli, Gabriele Croce, Stefania Valsecchi, Chiara Monti, Manuela Rampino, Teresa Conti, Bice Int J Mol Sci Article This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more exposed to ischemic/reperfusion injury compared to those from standard donors. Two liposome preparation techniques, thin film hydration and microfluidic techniques, are explored for formulating liposomes loaded with two model proteins, myoglobin and bovine serum albumin. The protein-loaded liposomes are characterized for their size by DLS and morphology by TEM. Protein releases from the liposomes are tested in PERF-GEN perfusion fluid, 4 °C, and compared to the in vitro protein release in PBS, 37 °C. Fluorescent liposome uptake is analyzed by fluorescent microscope in vitro on epithelial tubular renal cell cultures and ex vivo on isolated pig kidney in hypothermic perfusion conditions. The results show that microfluidics are a superior technique for obtaining reproducible spherical liposomes with suitable size below 200 nm. Protein encapsulation efficiency is affected by its molecular weight and isoelectric point. Lowering incubation temperature slows down the proteins release; the perfusion fluid significantly affects the release of proteins sensitive to ionic media (such as BSA). Liposomes are taken up by epithelial tubular renal cells in two hours’ incubation time. MDPI 2022-07-20 /pmc/articles/PMC9324182/ /pubmed/35887348 http://dx.doi.org/10.3390/ijms23147999 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pisani, Silvia Chiesa, Enrica Genta, Ida Dorati, Rossella Gregorini, Marilena Grignano, Maria Antonietta Ramus, Marina Ceccarelli, Gabriele Croce, Stefania Valsecchi, Chiara Monti, Manuela Rampino, Teresa Conti, Bice Liposome Formulation and In Vitro Testing in Non-Physiological Conditions Addressed to Ex Vivo Kidney Perfusion |
title | Liposome Formulation and In Vitro Testing in Non-Physiological Conditions Addressed to Ex Vivo Kidney Perfusion |
title_full | Liposome Formulation and In Vitro Testing in Non-Physiological Conditions Addressed to Ex Vivo Kidney Perfusion |
title_fullStr | Liposome Formulation and In Vitro Testing in Non-Physiological Conditions Addressed to Ex Vivo Kidney Perfusion |
title_full_unstemmed | Liposome Formulation and In Vitro Testing in Non-Physiological Conditions Addressed to Ex Vivo Kidney Perfusion |
title_short | Liposome Formulation and In Vitro Testing in Non-Physiological Conditions Addressed to Ex Vivo Kidney Perfusion |
title_sort | liposome formulation and in vitro testing in non-physiological conditions addressed to ex vivo kidney perfusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324182/ https://www.ncbi.nlm.nih.gov/pubmed/35887348 http://dx.doi.org/10.3390/ijms23147999 |
work_keys_str_mv | AT pisanisilvia liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT chiesaenrica liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT gentaida liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT doratirossella liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT gregorinimarilena liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT grignanomariaantonietta liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT ramusmarina liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT ceccarelligabriele liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT crocestefania liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT valsecchichiara liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT montimanuela liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT rampinoteresa liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion AT contibice liposomeformulationandinvitrotestinginnonphysiologicalconditionsaddressedtoexvivokidneyperfusion |