Cargando…
Easy—Ensemble Augmented-Shot-Y-Shaped Learning: State-of-the-Art Few-Shot Classification with Simple Components
Few-shot classification aims at leveraging knowledge learned in a deep learning model, in order to obtain good classification performance on new problems, where only a few labeled samples per class are available. Recent years have seen a fair number of works in the field, each one introducing their...
Autores principales: | Bendou, Yassir, Hu, Yuqing, Lafargue, Raphael, Lioi, Giulia, Pasdeloup, Bastien, Pateux, Stéphane, Gripon, Vincent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324255/ https://www.ncbi.nlm.nih.gov/pubmed/35877623 http://dx.doi.org/10.3390/jimaging8070179 |
Ejemplares similares
-
Heterogeneous Ensemble-Based Spike-Driven Few-Shot Online Learning
por: Yang, Shuangming, et al.
Publicado: (2022) -
Few-shot segmentation with duplex network and attention augmented module
por: Zeng, Sifu, et al.
Publicado: (2023) -
Few-Shot Emergency Siren Detection
por: Cantarini, Michela, et al.
Publicado: (2022) -
Feature augmentation based on information fusion rectification for few-shot image classification
por: Wang, Hang, et al.
Publicado: (2023) -
FewJoint: few-shot learning for joint dialogue understanding
por: Hou, Yutai, et al.
Publicado: (2022)