Cargando…

Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less.

In response to the need for novel therapeutic strategies to combat the development of microbial resistance, plant essential oils may represent a promising alternative source. This study set out to characterize the chemical composition and assess the antibacterial potential of Myriactis nepalensis Le...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Jikai, Gao, Yang, Xing, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324352/
https://www.ncbi.nlm.nih.gov/pubmed/35889501
http://dx.doi.org/10.3390/molecules27144631
_version_ 1784756782825996288
author Fu, Jikai
Gao, Yang
Xing, Xiang
author_facet Fu, Jikai
Gao, Yang
Xing, Xiang
author_sort Fu, Jikai
collection PubMed
description In response to the need for novel therapeutic strategies to combat the development of microbial resistance, plant essential oils may represent a promising alternative source. This study set out to characterize the chemical composition and assess the antibacterial potential of Myriactis nepalensis Less. essential oil (MNEO). Essential oil isolated from M. nepalensis by hydrodistillation was analyzed using a GC–MS technique. The antibacterial properties of MNEO alone and combined with antibiotics (chloramphenicol and streptomycin) were tested via the disc diffusion, microbroth dilution, and checkerboard methods. MNEO was represented by oxygenated sesquiterpenes (60.3%) and sesquiterpene hydrocarbons (28.6%), with caryophyllene oxide, spathulenol, humulene epoxide II, β-elemene, neointermedeol, and β-caryophyllene as the main compounds. MNEO exhibited a strong antibacterial effect against Gram-positive bacteria, with MIC and MBC values of 0.039 mg/mL and 0.039–0.156 mg/mL, respectively, and synergistic effects were observed in both combinations with chloramphenicol and streptomycin. Furthermore, the antibiofilm and cytotoxic activities of MNEO were also evaluated. The crystal violet assay was used for quantification of Staphylococcus aureus biofilm formation, and an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was conducted to determine cell viability. The results revealed MNEO could dose-dependently inhibit Staphylococcus aureus biofilm formation and possessed potential cytotoxic on both normal and cancer cells (IC(50) values from 13.13 ± 1.90 to 35.22 ± 8.36 μg/mL). Overall, the results indicate that MNEO may have promising applications in the field of bacterial infections.
format Online
Article
Text
id pubmed-9324352
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93243522022-07-27 Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less. Fu, Jikai Gao, Yang Xing, Xiang Molecules Article In response to the need for novel therapeutic strategies to combat the development of microbial resistance, plant essential oils may represent a promising alternative source. This study set out to characterize the chemical composition and assess the antibacterial potential of Myriactis nepalensis Less. essential oil (MNEO). Essential oil isolated from M. nepalensis by hydrodistillation was analyzed using a GC–MS technique. The antibacterial properties of MNEO alone and combined with antibiotics (chloramphenicol and streptomycin) were tested via the disc diffusion, microbroth dilution, and checkerboard methods. MNEO was represented by oxygenated sesquiterpenes (60.3%) and sesquiterpene hydrocarbons (28.6%), with caryophyllene oxide, spathulenol, humulene epoxide II, β-elemene, neointermedeol, and β-caryophyllene as the main compounds. MNEO exhibited a strong antibacterial effect against Gram-positive bacteria, with MIC and MBC values of 0.039 mg/mL and 0.039–0.156 mg/mL, respectively, and synergistic effects were observed in both combinations with chloramphenicol and streptomycin. Furthermore, the antibiofilm and cytotoxic activities of MNEO were also evaluated. The crystal violet assay was used for quantification of Staphylococcus aureus biofilm formation, and an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was conducted to determine cell viability. The results revealed MNEO could dose-dependently inhibit Staphylococcus aureus biofilm formation and possessed potential cytotoxic on both normal and cancer cells (IC(50) values from 13.13 ± 1.90 to 35.22 ± 8.36 μg/mL). Overall, the results indicate that MNEO may have promising applications in the field of bacterial infections. MDPI 2022-07-20 /pmc/articles/PMC9324352/ /pubmed/35889501 http://dx.doi.org/10.3390/molecules27144631 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fu, Jikai
Gao, Yang
Xing, Xiang
Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less.
title Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less.
title_full Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less.
title_fullStr Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less.
title_full_unstemmed Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less.
title_short Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less.
title_sort preliminary study on phytochemical constituents and biological activities of essential oil from myriactis nepalensis less.
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324352/
https://www.ncbi.nlm.nih.gov/pubmed/35889501
http://dx.doi.org/10.3390/molecules27144631
work_keys_str_mv AT fujikai preliminarystudyonphytochemicalconstituentsandbiologicalactivitiesofessentialoilfrommyriactisnepalensisless
AT gaoyang preliminarystudyonphytochemicalconstituentsandbiologicalactivitiesofessentialoilfrommyriactisnepalensisless
AT xingxiang preliminarystudyonphytochemicalconstituentsandbiologicalactivitiesofessentialoilfrommyriactisnepalensisless