Cargando…
Personalized Activity Recognition with Deep Triplet Embeddings
A significant challenge for a supervised learning approach to inertial human activity recognition is the heterogeneity of data generated by individual users, resulting in very poor performance for some subjects. We present an approach to personalized activity recognition based on deep feature repres...
Autores principales: | Burns, David, Boyer, Philip, Arrowsmith, Colin, Whyne, Cari |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324610/ https://www.ncbi.nlm.nih.gov/pubmed/35890902 http://dx.doi.org/10.3390/s22145222 |
Ejemplares similares
-
Out-of-Distribution Detection of Human Activity Recognition with Smartwatch Inertial Sensors
por: Boyer, Philip, et al.
Publicado: (2021) -
Physiotherapy Exercise Classification with Single-Camera Pose Detection and Machine Learning
por: Arrowsmith, Colin, et al.
Publicado: (2022) -
Evaluation of at-home physiotherapy: machine-learning prediction with smart watch inertial sensors
por: Boyer, Philip, et al.
Publicado: (2023) -
Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation
por: Alfakir, Abdalrahman, et al.
Publicado: (2022) -
Adherence Patterns and Dose Response of Physiotherapy for Rotator Cuff Pathology: Longitudinal Cohort Study
por: Burns, David, et al.
Publicado: (2021)