Cargando…

PGraphD*: Methods for Drift Detection and Localisation Using Deep Learning Modelling of Business Processes

This paper presents a set of methods, jointly called PGraphD*, which includes two new methods (PGraphDD-QM and PGraphDD-SS) for drift detection and one new method (PGraphDL) for drift localisation in business processes. The methods are based on deep learning and graphs, with PGraphDD-QM and PGraphDD...

Descripción completa

Detalles Bibliográficos
Autores principales: Hanga, Khadijah Muzzammil, Kovalchuk, Yevgeniya, Gaber, Mohamed Medhat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324690/
https://www.ncbi.nlm.nih.gov/pubmed/35885132
http://dx.doi.org/10.3390/e24070910
Descripción
Sumario:This paper presents a set of methods, jointly called PGraphD*, which includes two new methods (PGraphDD-QM and PGraphDD-SS) for drift detection and one new method (PGraphDL) for drift localisation in business processes. The methods are based on deep learning and graphs, with PGraphDD-QM and PGraphDD-SS employing a quality metric and a similarity score for detecting drifts, respectively. According to experimental results, PGraphDD-SS outperforms PGraphDD-QM in drift detection, achieving an accuracy score of 100% over the majority of synthetic logs and an accuracy score of 80% over a complex real-life log. Furthermore, PGraphDD-SS detects drifts with delays that are 59% shorter on average compared to the best performing state-of-the-art method.